The Impact of Melatonin Supplementation and NLRP3 Inflammasome Deletion on Age-Accompanied Cardiac Damage.

Antioxidants (Basel)

Centro de Investigación Biomédica, Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain.

Published: August 2021

To investigate the role of NLRP3 inflammasome in cardiac aging, we evaluate here morphological and ultrastructural age-related changes of cardiac muscles fibers in wild-type and NLRP3-knockout mice, as well as studying the beneficial effect of melatonin therapy. The results clarified the beginning of the cardiac sarcopenia at the age of 12 months, with hypertrophy of cardiac myocytes, increased expression of β-MHC, appearance of small necrotic fibers, decline of cadiomyocyte number, destruction of mitochondrial cristae, appearance of small-sized residual bodies, and increased apoptotic nuclei ratio. These changes were progressed in the cardiac myocytes of 24 old mice, accompanied by excessive collagen deposition, higher expressions of IL-1α, IL-6, and TNFα, complete mitochondrial vacuolation and damage, myofibrils disorganization, multivesicular bodies formation, and nuclear fragmentation. Interestingly, cardiac myocytes of NLRP3 mice showed less detectable age-related changes compared with WT mice. Oral melatonin therapy preserved the normal cardiomyocytes structure, restored cardiomyocytes number, and reduced β-MHC expression of cardiac hypertrophy. In addition, melatonin recovered mitochondrial architecture, reduced apoptosis and multivesicular bodies' formation, and decreased expressions of β-MHC, IL-1α, and IL-6. Fewer cardiac sarcopenic changes and highly remarkable protective effects of melatonin treatment detected in aged cardiomyocytes of NLRP3 mice compared with aged WT animals, confirming implication of the NLRP3 inflammasome in cardiac aging. Thus, NLRP3 suppression and melatonin therapy may be therapeutic approaches for age-related cardiac sarcopenia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8389221PMC
http://dx.doi.org/10.3390/antiox10081269DOI Listing

Publication Analysis

Top Keywords

nlrp3 inflammasome
12
melatonin therapy
12
cardiac myocytes
12
cardiac
11
inflammasome cardiac
8
cardiac aging
8
age-related changes
8
cardiac sarcopenia
8
il-1α il-6
8
nlrp3 mice
8

Similar Publications

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, but effective therapeutic drugs are still lacking. Dihydrotanshinone I (DHTS), a natural product isolated from Salvia miltiorrhiza, has been shown to have ameliorative effects on NAFLD. The aim of this study was to investigate the hepatoprotective effect of DHTS on NAFLD and its mechanism.

View Article and Find Full Text PDF

Role of NLRP3 Inflammasome in Chronic Pain and Alzheimer's Disease-A Review.

J Biochem Mol Toxicol

February 2025

Department of Histology and Embryology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, People's Republic of China.

The coexistence of Alzheimer's disease (AD) and chronic pain (CP) in the elderly population has been extensively documented, and a growing body of evidence supports the potential interconnections between these two conditions. This comprehensive review explores the mechanisms by which CP may contribute to the development and progression of AD, with a particular focus on neuroinflammatory pathways and the role of microglia, as well as the activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome. The review proposes that prolonged pain processing in critical brain regions can dysregulate the activity of the NLRP3 inflammasome within microglia, leading to the overproduction of pro-inflammatory cytokines and excessive oxidative stress in these regions.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is an autoimmune disorder that leads to severe cartilage deterioration and synovial impairment in the joints. Previous studies have indicated that the aberrant activation of the NLRP3 inflammasome in synovial macrophages plays a significant role in the pathogenesis of RA and has been regarded as a therapeutic target for the disease. In this study, we synthesized a novel canthin-6-one alkaloid, namely methyl canthin-6-one-2-carboxylate (Cant), and assessed its effects on NLRP3 inflammasome activation in macrophages.

View Article and Find Full Text PDF

Mechanisms and Emerging Regulators of Neuroinflammation: Exploring New Therapeutic Strategies for Neurological Disorders.

Curr Issues Mol Biol

December 2024

Immunology Research Lab & BK21-Four Educational Research Group for Age-Associated Disorder Control Technology, Department of Biological Science, Chosun University, Gwangju 61452, Republic of Korea.

Neuroinflammation is a complex and dynamic response of the central nervous system (CNS) to injury, infection, and disease. While acute neuroinflammation plays a protective role by facilitating pathogen clearance and tissue repair, chronic and dysregulated inflammation contributes significantly to the progression of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and Multiple Sclerosis. This review explores the cellular and molecular mechanisms underlying neuroinflammation, focusing on the roles of microglia, astrocytes, and peripheral immune cells.

View Article and Find Full Text PDF

Neuroendocrine neoplasms (NENs) are a diverse group originating from endocrine cells/their precursors in pancreas, small intestine, or lung. The key serum marker is chromogranin A (CgA). While commonly elevated in patients with NEN, its prognostic value is still under discussion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!