A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exploring the Antivirulence Activity of Pulverulentone A, a Phloroglucinol-Derivative from Leaf Extract, against Multi-Drug Resistant . | LitMetric

(1) Background: Bacterial resistance to antibiotics is a global life-threatening issue. Antivirulence therapy is a promising approach to combat bacterial infections as it disarms the bacteria from their virulence factors with reduced selective pressure and a lower chance of resistance. (2) Methods: leaf extract and its major constituent, Pulverulentone A, were tested for their ability to inhibit biofilm, exopolysaccharides, pyocyanin and proteases produced by MDR . In addition, a larvae model was employed to evaluate the in vivo cytotoxicity of Pulverulentone A and its ability to combat infection. Docking study was further performed to investigate Pulverulentone A druggability against main quorum sensing (QS) targets expressed by ; (3) Results: Both extract and the isolated compound could inhibit biofilm formation, extracellular polymeric substances (EPS) and pigment production by the tested isolates. Unexpectedly, no significant inhibition was observed on proteases production. The in silico docking analysis revealed good interactions of Pulverulentone A with all QS targets examined (LasR, MyfR/PqsR, QscR). Pulverulentone A was safe up to 400 µg·mL in caterpillars. Moreover, -treatment of with Pulverulentone A slightly enhanced the survival of the infected larvae. (4) Conclusions: The present study proves Pulverulentone A safety with significant in vitro and in silico antivirulence potential against .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8388764PMC
http://dx.doi.org/10.3390/antibiotics10080907DOI Listing

Publication Analysis

Top Keywords

pulverulentone
8
leaf extract
8
inhibit biofilm
8
exploring antivirulence
4
antivirulence activity
4
activity pulverulentone
4
pulverulentone phloroglucinol-derivative
4
phloroglucinol-derivative leaf
4
extract multi-drug
4
multi-drug resistant
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!