Seasonal Variation in the Faecal Microbiota of Mature Adult Horses Maintained on Pasture in New Zealand.

Animals (Basel)

School of Agriculture and Environment, College of Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand.

Published: August 2021

Seasonal variation in the faecal microbiota of forage-fed horses was investigated over a 12-month period to determine whether the bacterial diversity fluctuated over time. Horses ( = 10) were maintained on pasture for one year, with hay supplemented from June to October. At monthly intervals, data were recorded on pasture availability and climate (collected continuously and averaged on monthly basis), pasture and hay samples were collected for nutrient analysis, and faecal samples were collected from all horses to investigate the diversity of faecal microbiota using next-generation sequencing on the Illumina MiSeq platform. The alpha diversity of bacterial genera was high in all samples ( = 118), with significantly higher Simpson's ( 0.001) and Shannon-Wiener ( 0.001) diversity indices observed during the months when horses were kept exclusively on pasture compared to the months when pasture was supplemented with hay. There were significant effects of diet, season, and month (ANOSIM, 0.01 for each comparison) on the beta diversity of bacterial genera identified in the faeces. While there was some inter-horse variation, hierarchical clustering of beta diversity indices showed separate clades originating for samples obtained during May, June, and July (late-autumn to winter period), and January, February, and March (a period of drought), with a strong association between bacterial taxa and specific nutrients (dry matter, protein, and structural carbohydrates) and climate variables (rainfall and temperature). Our study supports the hypothesis that the diversity and community structure of the faecal microbiota of horses kept on pasture varied over a 12-month period, and this variation reflects changes in the nutrient composition of the pasture, which in turn is influenced by climatic conditions. The findings of this study may have implications for grazing management and the preparation of conserved forages for those horses susceptible to perturbations of the hindgut microbiota.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8388417PMC
http://dx.doi.org/10.3390/ani11082300DOI Listing

Publication Analysis

Top Keywords

faecal microbiota
16
seasonal variation
8
variation faecal
8
horses maintained
8
pasture
8
maintained pasture
8
12-month period
8
samples collected
8
diversity bacterial
8
bacterial genera
8

Similar Publications

Attention-deficit/hyperactivity disorder (ADHD) is a common psychiatric condition among children and adolescents, often associated with a high risk of psychiatric comorbidities. Currently, ADHD diagnosis relies exclusively on clinical presentation and patient history, underscoring the need for clinically relevant, reliable, and objective biomarkers. Such biomarkers may enable earlier diagnosis and lead to improved treatment outcomes.

View Article and Find Full Text PDF

Severe acute pancreatitis (SAP) is one of the leading causes of hospital admissions for gastrointestinal diseases, with a rising incidence worldwide. Intestinal microbiota dysbiosis caused by SAP exacerbates systemic inflammatory response syndrome and organ dysfunction. Fecal microbiota transplantation (FMT) has emerged as a promising therapeutic option for gastrointestinal diseases.

View Article and Find Full Text PDF

There is a complex interplay between the gut microbes, liver, and central nervous system, a gut-liver-brain axis, where the brain impacts intestinal and hepatic function while the gut and liver can impact cognition and mental status. Dysregulation of this axis can be seen in numerous diseases. Hepatic encephalopathy, a consequence of cirrhosis, is perhaps the best studied perturbation of this system.

View Article and Find Full Text PDF

α-Cyclodextrin (αCD), a cyclic hexasaccharide composed of six glucose units, is not digested in the small intestine but is completely fermented by gut microbes. Recently, we have reported that αCD supplementation for nonathlete men improved their 10 km biking times. However, the beneficial effects of αCD on exercise are not yet fully understood.

View Article and Find Full Text PDF

Probiotics exert their beneficial effects by improving the intestinal environment. Heat-inactivated probiotics may show similar effects. However, whether multi-strain mixtures (MSM) are better than single strains, irrespective of whether the bacteria are alive or dead, is unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!