A high-fat diet (HFD) is widely recognized as a significant modifiable risk for insulin resistance, inflammation, Type 2 diabetes, atherosclerosis and other metabolic diseases. However, the biological mechanism responsible for key metabolic disorders in the PAT of rabbits subject to HFD remains unclear. Here, untargeted metabolomics (LC-MS/MS) combined with liquid chromatography (LC) and high-resolution mass spectrometry (MS) were used to evaluate PAT metabolic changes. Histological observations showed that the adipocytes cells and density of PAT were significantly increased in HFD rabbits. Our study revealed 206 differential metabolites (21 up-regulated and 185 down-regulated); 47 differential metabolites (13 up-regulated and 34 down-regulated), comprising mainly phospholipids, fatty acids, steroid hormones and amino acids, were chosen as potential biomarkers to help explain metabolic disorders caused by HFD. These metabolites were mainly associated with the biosynthesis of unsaturated fatty acids, the arachidonic acid metabolic pathway, the ovarian steroidogenesis pathway, and the platelet activation pathway. Our study revealed that a HFD caused significant lipometabolic disorders. These metabolites may inhibit oxygen respiration by increasing the adipocytes cells and density, cause mitochondrial and endoplasmic reticulum dysfunction, produce inflammation, and finally lead to insulin resistance, thus increasing the risk of Type 2 diabetes, atherosclerosis, and other metabolic syndromes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8388361 | PMC |
http://dx.doi.org/10.3390/ani11082289 | DOI Listing |
Elife
January 2025
Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
The role of circulating metabolites on child development is understudied. We investigated associations between children's serum metabolome and early childhood development (ECD). Untargeted metabolomics was performed on serum samples of 5,004 children aged 6-59 months, a subset of participants from the Brazilian National Survey on Child Nutrition (ENANI-2019).
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.
Purpose: Psoriasis is a complex inflammatory skin disorder that is closely associated with metabolic syndrome (MetS). Limited information is available on skin metabolic changes in psoriasis; the effect of concurrent MetS on psoriatic skin metabolite levels is unknown. We aimed to expand this information through skin metabolomic analysis.
View Article and Find Full Text PDFPhytochem Anal
January 2025
Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Tena, Napo, Ecuador.
Introduction: Aqueous stem bark extracts of Aspidosperma rigidum Rusby, Couroupita guianensis Aubl., Monteverdia laevis (Reissek) Biral, and Protium sagotianum Marchand have been reported as traditional remedies in several countries of the Amazonian region. Despite previous research, further investigation to characterize secondary metabolites and the biological activity of extracts is needed to derive potential applications.
View Article and Find Full Text PDFJ Adv Res
January 2025
College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha 410004, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China. Electronic address:
Introduction: Soil nutrient supply drives the ecological functions of soil micro-food webs through bottom-up and top-down mechanisms in degraded agroecosystems. Nutrient limitation responds sensitively to variations in degraded agroecosystems through restoration practices, such as legume intercropping.
Objectives: This study examined the effects of legume intercropping on trophic cascade dynamics through resource supply in degraded purple soil ecosystems.
Biochemistry
January 2025
School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332, United States.
Coral reefs are hotspots of marine biodiversity, which results in the synthesis of a wide variety of compounds with unique molecular scaffolds, and bioactivities, rendering reefs an ecosystem of interest. The chemodiversity stems from the intricate relationships between inhabitants of the reef, as the chemistry produced partakes in intra- and interspecies communication, settlement, nutrient acquisition, and defense. However, the coral reefs are declining at an unprecedented rate due to climate change, pollution, and increased incidence of pathogenic diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!