Water shortage and excessive use of water resources in arid and semi-arid regions, such as Iran, highlights the importance of using treated wastewater, especially for the highly demanding agricultural sector. Constructed wetlands (CWs) are among green technologies that offer an efficient and cost-effective wastewater treatment. This study investigates the complementary treatment of effluent from the Fooladshahr wastewater treatment plant, Isfahan, Iran, using pilot-scale CWs with horizontal (H-CW) and horizontal-vertical flow (HV-CW). The performance of two substrates, pumice and gravel, and the effect of using plants (Phragmites australis) was compared. Maximum removal efficiencies of total suspended solids (TSS) and biochemical oxygen demand (BOD) were observed in the case of unplanted and planted HV-CW with pumice bed, respectively. In the case of gravel bed, planted H-CWs demonstrated maximum chemical oxygen demand (COD) removal efficiency. The highest mean outflow concentrations for TSS, BOD and COD were obtained in unplanted H-CW with pumice bed, likely due to shorter retention times compared to HV-CWs, as well as due to the absence of plants providing the required physicochemical and biological conditions for high performance treatment. Phosphate (PO) removal efficiency demonstrated seasonal dependency, where the highest values were obtained in warm seasons. In the case of fecal coliforms (FC), no significant differences were observed between the studied HV-CWs during the whole study period. Based on our results, planted H-CW with gravel bed provided an optimum removal efficiency while requiring a smaller footprint and lower expenditure than HV-CWs. This study demonstrates the application of CWs as an affordable solution for treating domestic wastewater for various reuse application in developing countries with water crisis, such as Iran.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.149615 | DOI Listing |
J Mol Model
January 2025
Processes, Materials and Environment Laboratory (LPME), Faculty of Sciences and Technology of Fez, Sidi Mohamed Ben Abdellah University, B.P. 2202, Fez, Morocco.
Context: Natural fluorapatite (FAP) has been investigated as an adsorbent for the removal of dyes such as methylene blue (MB) and crystal violet (CV) from aqueous solutions. Effective dye removal is crucial for water treatment, particularly for industrial wastewater containing toxic dyes. FAP, a naturally abundant material, was characterized using XRD, FTIR, and SEM analysis.
View Article and Find Full Text PDFInorg Chem
January 2025
Jiangxi Province Key Laboratory of Nuclear Physics and Technology, East China University of Technology, Nanchang 330013, China.
Recycling waste salt in the dry reprocessing of nuclear fuel and reducing electric energy consumption in the electrorefining process are crucial steps toward addressing significant challenges in this field. The present study proposes a novel approach to purify waste salt by selectively adsorbing excessive fission products using 5A molecular sieves (5A), based on the principles of electrorefining, with the ultimate aim of achieving sustainable development in nuclear fuel. First, Lutetium (Lu)-Bi alloy was synthesized through constant potential electrolysis in the LiCl-KCl-LuCl melt, resulting in a 90.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Laboratory Medicine, School of Medicine, Yangtze University, Jingzhou 434023, P.R. China.
Acylaminoacyl-peptide hydrolase (APEH), a serine peptidase that belongs to the prolyl oligopeptidase (POP) family, catalyzes removal of N-terminal acetylated amino acid residues from peptides. As a key regulator of protein N-terminal acetylation, APEH was involved in many important physiological processes while its aberrant expression was correlated with progression of various diseases such as inflammation, diabetics, Alzheimer's disease (AD), and cancers. However, while emerging attention has been attracted in APEH-related disease diagnosis and drug discovery, the mechanisms behind APEH and related disease progression are still unclear; thus, further investigating the physiological role and function of APEH is of great importance.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Plant Physiology, Faculty of Biology, Sofia University, 8 Dragan Tsankov Bul., 1164 Sofia, Bulgaria.
Microalgae offer a promising alternative for heavy metal removal, and the search for highly efficient strains is ongoing. This study investigated the potential of two microalgae, sp. BGV (Chlorophyta) and Schwabe & Simonsen (Cyanoprokaryota), to bind zinc ions (Zn⁺) and protect higher plants.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia.
Industrial wastewater containing heavy metal ions presents serious economic risk to the environment. In this study, a novel compound of aminated cellulose with jeffamine EDR148 was prepared to improve cellulose's adsorptive behavior towards metal ions. This study undertook a straightforward and efficient cellulose modification through homogeneous chlorination in N,N'-butylmethylimidazolium chloride to produce 6-deoxychlorocellulose (Cell-Cl), followed by a reaction with jeffamine EDR148 and ultimately resulting in the formation of aminated cellulose (Cell-Jef148).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!