Cardiovascular diseases are a serious threat to human health, especially in the elderly. Vascular aging makes people more susceptible to cardiovascular diseases due to significant dysfunction or senescence of vascular cells and maladaptation of vascular structure and function; moreover, vascular aging is currently viewed as a modifiable cardiovascular risk factor. To emphasize the relationship between senescent cells and vascular aging, we first summarize the roles of senescent vascular cells (endothelial cells, smooth muscle cells and immune cells) in the vascular aging process and inducers that contribute to cellular senescence. Then, we present potential strategies for directly targeting senescent cells (senotherapy) or preventively targeting senescence inducers (senoprevention) to delay vascular aging and the development of age-related vascular diseases. Finally, based on recent research, we note some important questions that still need to be addressed in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yjmcc.2021.08.009 | DOI Listing |
Clin Sci (Lond)
January 2025
Center for Interdisciplinary Research in Biology, College de France, Institut National de la Santé et de la Recherche Médicale, Paris, France.
Apelin, a (neuro) vasoactive peptide, plays a prominent role in controlling water balance and cardiovascular functions. Apelin and its receptor co-localize with vasopressin in magnocellular vasopressinergic neurons. Apelin receptors (Apelin-Rs) are also expressed in the collecting ducts of the kidney, where vasopressin type 2 receptors are also present.
View Article and Find Full Text PDFBackground: Although Amyloid-beta and Tau are the hallmarks of Alzheimer's Disease (AD), other protein pathways such as endothelial dysfunction may be involved and may precede cognitive symptoms. Our objective was to characterize the cerebrospinal fluid (CSF) proteomic profiles focusing on cardiometabolic-related protein pathways in individuals on the AD spectrum.
Methods: We performed CSF and plasma-targeted proteomics (276 proteins) from 354 participants of the Brain Stress Hypertension and Aging Program (BSHARP), of which 8% had preclinical AD, and 24% had MCI due to AD.
Muscle Nerve
January 2025
Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan.
Introduction: Mixed connective tissue disease (MCTD) patients often have myositis, however, myopathological and clinical data for MCTD are limited. Recent reports have shown that the pathology of MCTD myositis resembles that of immune-mediated necrotizing myopathy (IMNM), whereas earlier reports described perifascicular atrophy or inflammatory infiltrates predominantly in the perivascular region in MCTD myositis. We aim to describe the clinical and myopathological features of MCTD myositis.
View Article and Find Full Text PDFGeroscience
January 2025
Department of Surgery, Immanuel Clinic Rüdersdorf, University Clinic of Brandenburg Medical School, Berlin, Germany.
Aging is a multi-organ disease, yet the traditional approach has been to study each organ in isolation. Such organ-specific studies have provided invaluable information regarding its pathomechanisms. However, an overall picture of the whole-body network (WBN) during aging is still incomplete.
View Article and Find Full Text PDFNature
January 2025
State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!