Estimating the dynamic range of quantitative single-molecule localization microscopy.

Biophys J

Department of Physics, University of Toronto, Toronto, Ontario, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada. Electronic address:

Published: September 2021

In recent years, there have been significant advances in quantifying molecule copy number and protein stoichiometry with single-molecule localization microscopy (SMLM). However, as the density of fluorophores per diffraction-limited spot increases, distinguishing between detection events from different fluorophores becomes progressively more difficult, affecting the accuracy of such measurements. Although essential to the design of quantitative experiments, the dynamic range of SMLM counting techniques has not yet been studied in detail. Here, we provide a working definition of the dynamic range for quantitative SMLM in terms of the relative number of missed localizations or blinks and explore the photophysical and experimental parameters that affect it. We begin with a simple two-state model of blinking fluorophores, then extend the model to incorporate photobleaching and temporal binning by the detection camera. From these models, we first show that our estimates of the dynamic range agree with realistic simulations of the photoswitching. We find that the dynamic range scales inversely with the duty cycle when counting both blinks and localizations. Finally, we validate our theoretical approach on direct stochastic optical reconstruction microscopy (dSTORM) data sets of photoswitching Alexa Fluor 647 dyes. Our results should help guide researchers in designing and implementing SMLM-based molecular counting experiments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8511164PMC
http://dx.doi.org/10.1016/j.bpj.2021.08.024DOI Listing

Publication Analysis

Top Keywords

dynamic range
20
range quantitative
8
single-molecule localization
8
localization microscopy
8
range
5
estimating dynamic
4
quantitative single-molecule
4
microscopy years
4
years advances
4
advances quantifying
4

Similar Publications

Background: The growing use of leadless pacemaker (LP) technology requires safe and effective solutions for retrieving and removing these devices over the long term.

Objectives: This study sought to evaluate retrieval and removal of an active helix-fixation LP studied in worldwide regulatory clinical trials.

Methods: Subjects enrolled in the LEADLESS II phase 1 investigational device exemption, LEADLESS Observational, or LEADLESS Japan trials with an attempted LP retrieval at least 6 weeks postimplantation were included.

View Article and Find Full Text PDF

The Temporal Order of Mixed Viral Infections Matters: Common Events That Are Neglected in Plant Viral Diseases.

Viruses

December 2024

Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, C.P. 30100 Murcia, Spain.

Mixed infections of plant viruses are common in crops and represent a critical biotic factor with substantial epidemiological implications for plant viral diseases. Compared to single-virus infections, mixed infections arise from simultaneous or sequential infections, which can inevitably affect the ecology and evolution of the diseases. These infections can either exacerbate or ameliorate symptom severity, including virus-virus interactions within the same host that may influence a range of viral traits associated with disease emergence.

View Article and Find Full Text PDF

Chronic Hepatitis B Genotype C Mouse Model with Persistent Covalently Closed Circular DNA.

Viruses

December 2024

The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.

Hepatitis B virus (HBV) can cause chronic infections, significantly increasing the risk of death from cirrhosis and hepatocellular carcinoma (HCC). A key player in chronic HBV infection is covalently closed circular DNA (cccDNA), a stable episomal form of viral DNA that acts as a persistent reservoir in infected hepatocytes and drives continuous viral replication. Despite the development of several animal models, few adequately replicate cccDNA formation and maintenance, limiting our understanding of its dynamics and the evaluation of potential therapeutic interventions targeting cccDNA.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been detected in multiple animal species, including white-tailed deer (WTD), raising concerns about zoonotic transmission, particularly in environments with frequent human interactions. To understand how human exposure influences SARS-CoV-2 infection in WTD, we compared infection and exposure prevalence between farmed and free-ranging deer populations in Florida. We also examined the timing and viral variants in WTD relative to those in Florida's human population.

View Article and Find Full Text PDF

Wolbachia-based mosquito control strategies have gained significant attention as a sustainable approach to reduce the transmission of vector-borne diseases such as dengue, Zika, and chikungunya. These endosymbiotic bacteria can limit the ability of mosquitoes to transmit pathogens, offering a promising alternative to traditional chemical-based interventions. With the growing impact of climate change on mosquito population dynamics and disease transmission, Wolbachia interventions represent an adaptable and resilient strategy for mitigating the public health burden of vector-borne diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!