Dendritic spine dynamics are thought to be substrates for motor learning and memory, and altered spine dynamics often lead to impaired performance. Here, we describe an exception to this rule by studying mice lacking paired immunoglobulin receptor B (PirB). Pyramidal neuron dendrites in PirB mice have increased spine formation rates and density. Surprisingly, PirB mice learn a skilled reaching task faster than wild-type (WT) littermates. Furthermore, stabilization of learning-induced spines is elevated in PirB mice. Mechanistically, single-spine uncaging experiments suggest that PirB is required for NMDA receptor (NMDAR)-dependent spine shrinkage. The degree of survival of newly formed spines correlates with performance, suggesting that increased spine stability is advantageous for learning. Acute inhibition of PirB function in M1 of adult WT mice increases the survival of learning-induced spines and enhances motor learning. These results demonstrate that there are limits on motor learning that can be lifted by manipulating PirB, even in adulthood.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8542616 | PMC |
http://dx.doi.org/10.1016/j.neuron.2021.07.030 | DOI Listing |
NPJ Digit Med
January 2025
Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
Adaptive deep brain stimulation (DBS) provides individualized therapy for people with Parkinson's disease (PWP) by adjusting the stimulation in real-time using neural signals that reflect their motor state. Current algorithms, however, utilize condensed and manually selected neural features which may result in a less robust and biased therapy. In this study, we propose Neural-to-Gait Neural network (N2GNet), a novel deep learning-based regression model capable of tracking real-time gait performance from subthalamic nucleus local field potentials (STN LFPs).
View Article and Find Full Text PDFNeuroscience
January 2025
Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av. Italia 3318, Montevideo, CP 11600, Uruguay; Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Iguá, Montevideo, 4225, CP 11400, Uruguay. Electronic address:
Local protein synthesis (LPS) in axons is now recognized as a physiological process, participating both in the maintenance of axonal function and diverse plastic phenomena. In the last decades of the 20th century, the existence and function of axonal LPS were topics of significant debate. Very early, axonal LPS was thought not to occur at all and was later accepted to play roles only during development or in response to specific conditions.
View Article and Find Full Text PDFMov Disord Clin Pract
January 2025
University of Rochester Medical Center, Center for Health + Technology (CHeT), Rochester, New York, USA.
Background: Limited evidence exists regarding the meaningfulness of symptoms experienced in early Parkinson's disease (PD).
Objectives: To identify the most bothersome symptoms experienced by people with early PD, leveraging data from the Parkinson's Disease Patient Report of Problems (PD-PROP) questionnaire within the Fox Insight Study.
Methods: Individuals with a self-reported diagnosis of PD completed the PD-PROP questionnaire, reporting up to five most bothersome symptoms.
Psychon Bull Rev
January 2025
Experimental Psychology, University College London, London, UK.
Hand movements frequently occur with speech. The extent to which the memories that guide co-speech hand movements are tied to the speech they occur with is unclear. Here, we paired the acquisition of a new hand movement with speech.
View Article and Find Full Text PDFSci Rep
January 2025
Neuro-Robotics Lab, Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan.
Humans exploit motor synergies for motor control; however, how they emerge during motor learning is not clearly understood. Few studies have dealt with the computational mechanism for generating synergies. Previously, optimal control generated synergistic motion for the upper limb; however, it has not yet been applied to the high-dimensional whole-body system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!