Upon viral infection, natural killer (NK) cells expressing certain germline-encoded receptors are selected, expanded, and maintained in an adaptive-like manner. Currently, these are thought to differentiate along a common pathway. However, by fate mapping of single NK cells upon murine cytomegalovirus (MCMV) infection, we identified two distinct NK cell lineages that contributed to adaptive-like responses. One was equivalent to conventional NK (cNK) cells while the other was transcriptionally similar to type 1 innate lymphoid cells (ILC1s). ILC1-like NK cells showed splenic residency and strong cytokine production but also recognized and killed MCMV-infected cells, guided by activating receptor Ly49H. Moreover, they induced clustering of conventional type 1 dendritic cells and facilitated antigen-specific T cell priming early during MCMV infection, which depended on Ly49H and the NK cell-intrinsic expression of transcription factor Batf3. Thereby, ILC1-like NK cells bridge innate and adaptive viral recognition and unite critical features of cNK cells and ILC1s.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8528403PMC
http://dx.doi.org/10.1016/j.immuni.2021.08.002DOI Listing

Publication Analysis

Top Keywords

cells
10
fate mapping
8
mapping single
8
single cells
8
type innate
8
innate adaptive
8
viral infection
8
mcmv infection
8
cnk cells
8
cells ilc1s
8

Similar Publications

Clinical evidence increasingly suggests that traditional treatments for dysfunctional uterine bleeding (DUB) have limited success. In this study, blood samples from 10 DUB patients and 10 healthy controls were collected for transcriptome sequencing. Then, the differentially expressed genes (DEGs) were screened and crossed with the DUB-related module genes to obtain the target genes.

View Article and Find Full Text PDF

SEPO-FI: Deep-learning based software to calculate fusion index of muscle cells.

Comput Biol Med

January 2025

School of Computer Science, Chungbuk National University, Cheongju 28644, Republic of Korea. Electronic address:

The fusion index is a critical metric for quantitatively assessing the transformation of in vitro muscle cells into myotubes in the biological and medical fields. Traditional methods for calculating this index manually involve the labor-intensive counting of numerous muscle cell nuclei in images, which necessitates determining whether each nucleus is located inside or outside the myotubes, leading to significant inter-observer variation. To address these challenges, this study proposes a three-stage process that integrates the strengths of pattern recognition and deep-learning to automatically calculate the fusion index.

View Article and Find Full Text PDF

Myocardial infarction can lead to the loss of billions of cardiomyocytes, and while cell-based therapies are an option, immature nature of in vitro-generated human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iCMs) is a roadblock to their development. Existing iPSC differentiation protocols don't go beyond producing fetal iCMs. Recently, adult extracellular matrix (ECM) was shown to retain tissue memory and have some success driving tissue-specific differentiation in unspecified cells in various organ systems.

View Article and Find Full Text PDF

The immunogenicity of rabies vaccines is commonly measured by serological testing, which includes measuring rabies virus-neutralising antibody titre levels in the serum. Apart from humoral immunity, cellular immunity measurements are also helpful in assessing the immunogenicity and efficacy of rabies vaccinations. Recently, there has been an increased emphasis on cellular immunity measurements against rabies in humans and animals.

View Article and Find Full Text PDF

Efficient and Rapid Generation of Neural Stem Cells by Direct Conversion Fibroblasts with Single microRNAs.

Stem Cells

January 2025

Medicine and Pharmacy Research Center, and Yantai Key Laboratory for Stem Cell Biology and Regenerative Medicine, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong 264003, China.

Neural stem cells (NSCs) have great potentials in the application of neurodegenerative disease therapy, drug screening, and disease modeling. However, current approaches for induced NSCs (iNSCs) generation from somatic cells are still slow and inefficient. Here we establish a rapid and efficient method of iNSCs generation from human and mouse fibroblasts by single microRNAs (miR-302a).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!