Protozoan parasites are responsible for severe disease and suffering in humans worldwide. Apart from disease transmission via insect vectors and contaminated soil, food, or water, transmission may occur congenitally or by way of blood transfusion and organ transplantation. Several recent outbreaks associated with fresh produce and potable water emphasize the need for vigilance and monitoring of protozoan parasites that cause severe disease in humans globally. Apart from the tropical parasite Plasmodium spp., other protozoa causing debilitating and fatal diseases such as Trypanosoma spp. and Naegleria fowleri need to be studied in more detail. Climate change and socioeconomic issues such as migration continue to be major drivers for the spread of these neglected tropical diseases beyond endemic zones. Due to the complex life cycles of protozoa involving multiple hosts, vectors, and stringent growth conditions, studying these parasites has been challenging. While in vivo models may provide insights into host-parasite interaction, the ethical aspects of laboratory animal use and the challenge of ready availability of parasite life stages underline the need for in vitro models as valid alternatives for culturing and maintaining protozoan parasites. To our knowledge, this review is the first of its kind to highlight available in vitro models for protozoa causing highly infectious diseases. In recent years, several research efforts using new technologies such as 3D organoid and spheroid systems for protozoan parasites have been introduced that provide valuable tools to advance complex culturing models and offer new opportunities toward the advancement of parasite in vitro studies. In vitro models aid scientists and healthcare providers in gaining insights into parasite infection biology, ultimately enabling the use of novel strategies for preventing and treating these diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8389406PMC
http://dx.doi.org/10.1371/journal.pntd.0009668DOI Listing

Publication Analysis

Top Keywords

protozoan parasites
20
vitro models
12
severe disease
8
protozoa causing
8
parasites
6
vitro
5
models
5
truman protozoan
4
parasites review
4
review vitro
4

Similar Publications

Enhancing farmer awareness: Vertical transmission of Neospora caninum in aborting cattle and the value of diagnostics tools.

Vet Parasitol

January 2025

Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, Bern 3012, Switzerland. Electronic address:

The protozoan parasite Neospora caninum is an important cause of abortion in cattle. Infection occurs horizontally by ingestion of oocysts shed by canids or vertically, from an infected dam to the foetus, and may result in abortion, stillbirth, or the birth of subclinically infected offspring. We estimated the occurrence of N.

View Article and Find Full Text PDF

The intracellular protozoan Toxoplasma gondii manipulates host cell signaling to avoid targeting by autophagosomes and lysosomal degradation. Epidermal Growth Factor Receptor (EGFR) is a mediator of this survival strategy. However, EGFR expression is limited in the brain and retina, organs affected in toxoplasmosis.

View Article and Find Full Text PDF

Kinetoplastids are a large and diverse protist group, spanning ecologically important free-living forms to medically important parasites. The taxon Allobodonidae holds an unresolved position within kinetoplastids, and the sole described species, Allobodo chlorophagus, is uncultivated, being a necrotroph/parasite of macroalgae. Here we describe Allobodo yubaba sp.

View Article and Find Full Text PDF

The globally distributed ciliate Balanion planctonicum is a primary consumer of phytoplankton spring blooms. Due to its small size (~20 μm), identification and quantification by molecular tools is preferable as an alternative to the laborious counting of specimen in quantitative protargol stains. However, previous sequencing of the 18S rDNA V9 region of B.

View Article and Find Full Text PDF

Background: Parasitic infections are known to suppress the cell mediated immunity that protects against tuberculosis. The status of parasitic infections among bacteriologically confirmed tuberculosis patients and their household contacts in Cameroon is not well established. This study aimed at reporting the status of parasitic infections in TB patients and their household contacts with keen interest in associated risk factors to disease exposure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!