In horses, is associated with acute and fatal enterocolitis, which is caused by a beta toxin (CPB), and myonecrosis, which is caused by an alpha toxin (CPA). Although the most effective way to prevent these diseases is through vaccination, specific clostridial vaccines for horses against are not widely available. The aim of this study was to pioneer the immunization of horses with three different concentrations (100, 200 and 400 µg) of recombinant alpha (rCPA) and beta (rCPB) proteins, as well as to evaluate the humoral immune response over 360 days. Recombinant toxoids were developed and applied to 50 horses on days 0 and 30. Those vaccines attempted to stimulate the production of alpha antitoxin (anti-CPA) and beta antitoxin (anti-CPB), in addition to becoming innocuous, stable and sterile. There was a reduction in the level of neutralizing anti-CPA and anti-CPB antibodies following the 60th day; therefore, the concentrations of 200 and 400 µg capable of inducing a detectable humoral immune response were not determined until day 180. In practical terms, 200 µg is possibly the ideal concentration for use in the veterinary industry's production of vaccines against the action of C. perfringens in equine species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8402361PMC
http://dx.doi.org/10.3390/toxins13080566DOI Listing

Publication Analysis

Top Keywords

humoral immune
12
immune response
12
recombinant toxoids
8
200 400
8
400 µg
8
horses
5
response evaluation
4
evaluation horses
4
horses vaccinated
4
vaccinated recombinant
4

Similar Publications

Here we analyzed the relative contributions of CD4 regulatory T cells expressing Forkhead box protein P3 (FOXP3) and CD8 regulatory T cells expressing killer cell immunoglobulin-like receptors to the control of autoreactive T and B lymphocytes in human tonsil-derived immune organoids. FOXP3 and GZMB respectively encode proteins FOXP3 and granzyme B, which are critical to the suppressive functions of CD4 and CD8 regulatory T cells. Using CRISPR-Cas9 gene editing, we were able to achieve a reduction of ~90-95% in the expression of these genes.

View Article and Find Full Text PDF

Spatiotemporal Dynamic Immunomodulation by Infection-Mimicking Gels Enhances Broad and Durable Protective Immunity Against Heterologous Viruses.

Adv Sci (Weinh)

January 2025

SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, Department of Nano Science and Technology, School of Chemical Engineering, Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.

Despite their safety and widespread use, conventional protein antigen-based subunit vaccines face significant challenges such as low immunogenicity, insufficient long-term immunity, poor CD8 T-cell activation, and poor adaptation to viral variants. To address these issues, an infection-mimicking gel (IM-Gel) is developed that is designed to emulate the spatiotemporal dynamics of immune stimulation in acute viral infections through in situ supramolecular self-assembly of nanoparticulate-TLR7/8a (NP-TLR7/8a) and an antigen with tannic acid (TA). Through collagen-binding properties of TA, the IM-Gel enables sustained delivery and enhanced retention of NP-TLR7/8a and protein antigen in the lymph node subcapsular sinus of mice for over 7 days, prolonging the exposure of vaccine components in both B cell and T cell zones, leading to robust humoral and cellular responses.

View Article and Find Full Text PDF

The discovery of broadly protective antibodies to the influenza virus neuraminidase (NA) has raised interest in NA as a vaccine target. However, recombinant, solubilized tetrameric NA ectodomains are often challenging to express and isolate, hindering the study of anti-NA humoral responses. To address this obstacle, we established a panel of 22 non-adherent cell lines stably expressing native, historical N1, N2, N3, N9, and NB NAs anchored on the cell surface.

View Article and Find Full Text PDF

Introduction: Cystic echinococcosis (CE), a chronic disabling parasitic zoonosis, poses a great threat to public health and livestock production and causes huge economic losses globally. The commercial Quil-A-adjuvanted Eg95 vaccine was empirically effective for CE control; however, it is expensive and has side effects and insufficient immunity.

Purpose: This study aimed to employ a novel adjuvant consisting of a delivery system and an immune potentiator and assess its adjuvanticity to Eg95 antigen, thereby developing a safe and cost-effective novel vaccine against the disease.

View Article and Find Full Text PDF

Background: Anti-programmed cell death protein 1 (anti-PD-1) antibodies have achieved revolutionary success in cancer therapy. However, the impact of anti-PD-1 therapy on host humoral immunity in humans during cancer immunotherapy requires further investigation.

Methods: We evaluated immunoglobulin titers by ELISA and screened the immune landscape of immune cells from 25 healthy donors and 50 cases including 25 new-onset hepatocellular carcinoma (HCC) patients prior to systemic treatment and 25 HCC patients undergoing anti-PD-1 therapy by multicolor flow cytometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!