Simple perovskite crystals undergo structural phase transitions on cooling to low temperatures, which significantly change the material properties of the crystal. In this work, we rigorously characterize the temperature evolution of permittivity of a perovskite crystal as it undergoes phase transitions. In particular, we have undertaken precision measurements of a single crystal of Strontium Titanate from 294.6 to 5.6 K, by measuring the frequency of multiple microwave transverse electric (TE) and magnetic resonant modes simultaneously. The multi-mode microwave measurement technique of resonant frequency used in this work allows high precision determination of any induced anisotropy of the permittivity as the crystal undergoes structural phase transitions. Compared with previous results, we unequivocally show that the permittivity has an isotropic value of 316.3±2.2 at room temperature, consistent with its well-known cubic structure, and determine the onset of dielectric anisotropy as the crystal is cooled to lower temperatures. We show that the crystal exhibits uniaxial anisotropy in the permittivity below 105 K when the structure becomes tetragonal, and exhibits biaxial anisotropy in the permittivity below 51 K when the structure becomes orthorhombic.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TUFFC.2021.3108118DOI Listing

Publication Analysis

Top Keywords

phase transitions
16
anisotropy permittivity
12
structural phase
8
crystal undergoes
8
crystal
6
permittivity
5
precision multi-mode
4
multi-mode dielectric
4
dielectric characterization
4
characterization crystalline
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!