Peptidase neurolysin (Nln) is an enzyme that functions to cleave various neuropeptides. Upregulation of Nln after stroke has identified the enzyme as a critical endogenous cerebroprotective mechanism and validated target for the treatment of ischemic stroke. Overexpression of Nln in a mouse model of stroke results in dramatic improvement of stroke outcomes, while pharmacological inhibition aggravates them. Activation of Nln has therefore emerged as an intriguing target for drug discovery efforts for ischemic stroke. Herein, we report the discovery and hit-to-lead optimization of first-in-class Nln activators based on histidine-containing dipeptide hits identified from a virtual screen. Adopting a peptidomimetic approach provided lead compounds that retain the pharmacophoric histidine moiety and possess single-digit micromolar potency over 40-fold greater than the hit scaffolds. These compounds exhibit 5-fold increased brain penetration, significant selectivity over highly homologous peptidases, greater than 65-fold increase in mouse brain stability, and 'drug-like' fraction unbound in the brain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9295256PMC
http://dx.doi.org/10.1021/acs.jmedchem.1c00759DOI Listing

Publication Analysis

Top Keywords

brain penetration
8
ischemic stroke
8
nln
5
stroke
5
discovery first-in-class
4
first-in-class peptidomimetic
4
peptidomimetic neurolysin
4
neurolysin activators
4
activators possessing
4
possessing enhanced
4

Similar Publications

Site-Specific Molecular Engineering of Nanobody-Glucoside Conjugates for Enhanced Brain Tumor Targeting.

Bioconjug Chem

January 2025

Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.

Nanobodies play an increasingly prominent role in cancer imaging and therapy. However, their efficacy is often constrained by inadequate tumor penetration and rapid clearance from the bloodstream, particularly in brain tumors due to the intractable blood-brain barrier (BBB). Glycosylation is a favorable strategy for modulating the biological functions of nanobodies, including permeability and pharmacokinetics, but it also leads to heterogeneous glycan structures, which affect the targeting ability, stability, and quality of nanobodies.

View Article and Find Full Text PDF

Central Nervous System Metastases in Breast Cancer.

Curr Treat Options Oncol

January 2025

Breast Oncology Program, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.

Breast cancer metastasizing to the central nervous system (CNS) encompasses two distinct entities: brain metastases involving the cerebral parenchyma and infiltration of the leptomeningeal space, i.e., leptomeningeal disease.

View Article and Find Full Text PDF

Background: Insulin resistance (IR) is associated with abnormal tau-phosphorylation and IR markers in AD brain co-localize with neurofibrillary tangles. One strategy to overcome brain IR is to increase brain insulin is via intranasal insulin (INI) administration using specialized intranasal devices that deliver insulin to the brain. Our recent INI vs.

View Article and Find Full Text PDF

Background: The G protein-coupled receptor GPR39 is heavily associated with the pathogenesis of neurologic disorders, including Alzheimer's disease (AD) and related dementia (ADRD). Its dysregulation of zinc 2+ (Zn) processes triggers metallic dyshomeostasis, oxidative stress, neuroinflammation, microtubule destabilization, synaptic dysfunction, and tau phosphorylation-all hallmarks of neurodegeneration. Hence, pharmacologic modulation of GPR39 could offer an effective treatment against AD and ADRD.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Brown University, Providence, RI, USA.

Background: Recent studies show apolipoprotein E4 (APOE4), the strongest known genetic risk factor for late-onset Alzheimer's disease, is associated with vascular dysfunctions such as blood-brain barrier breakdown, in both animal models and humans. However, there is a lack of understanding on how vascular alterations progress with age in APOE4.

Method: Human APOE4 (m/f, n=10 per group) and APOE3 targeted replacement mice (m, n=10) were used to investigate temporal dynamics of long-term, progressive cerebral microvascular alterations in APOE4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!