Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mitochondrion is a promising target in cancer therapy. However, gaining access to this organelle is difficult due to the obstacles to cross the complicated mitochondrial membrane. Cell-penetrating peptides (CPPs) with mitochondrion-targeting ability, named mitochondrion-targeting peptides (MTPs), are efficient tools to deliver exogenous therapeutics into mitochondria. Herein, we report several new MTPs, which can be readily synthesized via resin-based solid-phase peptide synthesis. In particular, MTP3 (compound 5), consisting of three positively charged arginines and two D- and L- alternating naphthylalanines, demonstrated excellent mitochondrion-targeting ability with high Pearson's correlation coefficient, suggesting that MTP3 has good potential for mitochondrion-targeted drug delivery. As proof-of-concept, the feasibility of MTP3 was validated by the preparation of a mitochondrion-targeting prodrug (compound 17, doxorubicin-based prodrug). This prodrug was subsequently confirmed to be specifically transported to the mitochondria of tumor cells, where it was able to release the native doxorubicin upon intracellular GSH activation, leading to mitochondrial depolarization and eventually cell death. Importantly, compound 17 showed good cytotoxicity against human tumor cells while negligible toxicity towards normal cells, indicating its potential as a potent mitochondrial medicine for targeted cancer therapy. Our study thus opens a way for engineered CPPs to be used to deliver bioactive cargos in mitochondrion-targeted cancer therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202102523 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!