A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Benefits of betanin in rotenone-induced Parkinson mice. | LitMetric

Benefits of betanin in rotenone-induced Parkinson mice.

Metab Brain Dis

Animal Toxicology and Physiology Specialty Research Unit (ATPSRU), Physiology Division, Department of Zoology, Faculty of Science, Kasetsart University, 50 Ngamwongwan road, Jatuchak, Bangkok, 10900, Thailand.

Published: December 2021

The present study aimed to investigate betanin's neuroprotective effect in mice with rotenone-induced Parkinson-like motor dysfunction and neurodegeneration. Forty male ICR mice were divided into 4 groups: Sham-veh, Rot-veh, Rot-Bet100 and Rot-Bet200. Rotenone at 2.5 mg/kg/48 h was subcutaneous injected in Rot groups, and betanin at 100 and 200 mg/kg/48 h were given alternately with the rotenone injections in Bet groups for 6 weeks. Motor dysfunctions were evaluated weekly using hanging wire and rotarod tests. Brain oxidative status including malondialdehyde, reduced glutathione, catalase, superoxide dismutase, with neuronal degeneration in the motor cortex, striatum and substantia nigra par compacta were evaluated. The immunohistochemical densities of tyrosine hydroxylase in striatum and in substantia nigra par compacta were also measured. We found that rotenone significantly decreased the time to fall in a hanging wire test after the 4 week and after the rotarod test at the 6 week (p < 0.05). The percentage of neuronal degeneration in substantia nigra par compacta, striatum and motor cortex significantly increased (p < 0.05), and the tyrosine hydroxylase density in substantia nigra par compacta and in striatum significantly decreased (p < 0.05). Betanin at 100 and 200 mg/kg significantly prevented substantia nigra par compacta, striatum and motor cortex neuronal degeneration (p < 0.05) and maintained tyrosine hydroxylase density in substantia nigra par compacta and in striatum (p < 0.05). These findings appeared concurrently with improved effects on the time to fall in hanging wire and rotarod tests (p < 0.05). Treatment with betanin significantly prevented increased malondialdehyde levels and boosted reduced glutathione, catalase and superoxide dismutase activities (p < 0.05). Betanin exhibits neuroprotective effects against rotenone-induced Parkinson in mice regarding both motor dysfunction and neurodegeneration. Betanin's neurohealth benefit relates to its powerful antioxidative property. Therefore, betanin use in neurodegenerative disease is interesting to study.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11011-021-00826-0DOI Listing

Publication Analysis

Top Keywords

hanging wire
8
striatum substantia
8
substantia nigra
8
nigra par
8
par compacta
8
test week
8
benefits betanin
4
betanin rotenone-induced
4
rotenone-induced parkinson
4
parkinson mice
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!