Exploring Genotype-by-Environment Interactions of Chemical Composition of Raspberry by Using a Metabolomics Approach.

Metabolites

Departamento de Biología Molecular y Bioquímica, Campus de Teatinos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Campus de Teatinos, 29071 Málaga, Spain.

Published: July 2021

Promoting the consumption of fruits is a key objective of nutrition policy campaigns due to their associated health benefits. Raspberries are well appreciated for their remarkable flavor and nutritional value attributable to their antioxidant properties. Consequently, one of the objectives of present-day raspberry breeding programs is to improve the fruit's sensory and nutritive characteristics. However, developing new genotypes with enhanced quality traits is a complex task due to the intricate impacts genetic and environmental factors have on these attributes, and the difficulty to phenotype them. We used a multi-platform metabolomic approach to compare flavor- and nutritional-related metabolite profiles of four raspberry cultivars ('Glen Ample', 'Schönemann', 'Tulameen' and 'Veten') grown in different European climates. Although the cultivars appear to be better adapted to high latitudes, for their content in soluble solids and acidity, multivariate statistical analyses allowed us to underscore important genotypic differences based on the profiles of important metabolites. 'Schönemann' and 'Veten' were characterized by high levels of anthocyanins and ellagitannins, respectively, 'Tulameen' by its acidity, and 'Glen Ample' for its content of sucrose and β-ionone, two main flavor contributors. Our results confirmed the value of metabolomic-driven approaches, which may foster the development of cultivars with enhanced health properties and flavor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8398420PMC
http://dx.doi.org/10.3390/metabo11080490DOI Listing

Publication Analysis

Top Keywords

'glen ample'
8
exploring genotype-by-environment
4
genotype-by-environment interactions
4
interactions chemical
4
chemical composition
4
composition raspberry
4
raspberry metabolomics
4
metabolomics approach
4
approach promoting
4
promoting consumption
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!