According to the comparison between a proton battery and a proton exchange membrane fuel cell (PEMFC), the PEMFC requires oxygen and hydrogen for generating electricity, so a hydrogen tank is required, leading to larger volume of PEMFC. The proton battery can store hydrogen in the carbon layer, combined with the oxygen in the air to form water to generate electricity; thus, the battery cost and the space for a hydrogen tank can be reduced a lot, and it is used more extensively. As the proton battery is a new research area, multiple important physical quantities inside the proton battery should be further understood and monitored so as to enhance the performance of battery. The proton battery has the potential for practical applications, as well as water electrolysis, proton storage and discharge functions, and it can be produced without expensive metals. Therefore, in this study, we use micro-electro-mechanical systems (MEMS) technology to develop a diagnostic tool for the proton battery based on the developed microhydrogen sensor, integrated with the voltage, current, temperature, humidity and flow microsensors developed by this laboratory to complete a flexible integrated 6-in-1 microsensor, which is embedded in the proton battery to measure internal important physical parameters simultaneously so that the reaction condition in the proton battery can be mastered more accurately. In addition, the interaction of physical quantities of the proton battery are discussed so as to enhance the proton battery's performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8400466 | PMC |
http://dx.doi.org/10.3390/membranes11080615 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, Barcelona 08028, Spain.
The oxygen reduction reaction (ORR) stands as a pivotal process in electrochemistry, finding applications in various energy conversion technologies such as fuel cells, metal-air batteries, and chlor-alkali electrolyzers. Hereby, a comprehensive density functional theory (DFT) investigation is presented into the proposed conventional and unconventional ORR mechanisms using single-atom catalysts (SACs) supported on nitrogen-doped graphene (NG) as model systems. Several reaction intermediates have been identified that appear to be more stable than the ones postulated in the conventional mechanism, which follows the *OOH, *O, and *OH intermediates.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Although microenvironments surrounding single-atom catalysts (SACs) have been widely demonstrated to have a remarkable effect on their catalytic performances, it remains unclear whether the local structure beyond the secondary coordination shells works as well or not. Herein, we employed a series of metal-organic frameworks (MOFs) with well-defined and tunable second-beyond coordination spheres as model SAC electrocatalysts to discuss the influence of long-distance structure on the ammonia synthesis from nitrate, which were synthesized and denoted as Cu-NDI-X (X = NMe, H, F). It is first experimentally confirmed that the remote substitution of function groups beyond the secondary coordination sphere can remarkably affect the activity of ammonia synthesis.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Harbin Institute of Technology (Shenzhen), Department of Materials Science and Engineering, College Park, Building C, 404, Shenzhen, CHINA.
Conventional SEI in aqueous Zn-ion batteries mainly acts as a physical barrier to prevent HER, which is prone to structural deterioration stemming from uneven Zn deposition at high current densities. Herein, we propose an in-situ structural design of polymer-inorganic bilayer SEI with a proton holder feature by aniline-modulated electrolytes. The inner ZnF2 with high stiffness and strength effectively suppresses Zn dendrites.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Nanjing University of Aeronautics and Astronautics, College of Materials Science and Technology, No. 169 Sheng Tai West Road, Jiangning District, Nanjing, Jiangsu, China, 211106, Nanjing, CHINA.
The neutral oxygen catalysis is an electrochemical reaction of the utmost importance in energy generation, storage application, and chemical synthesis. However, the restricted availability of protons poses a challenge to achieving kinetically favorable oxygen catalytic reactions. Here, we alter the interfacial water orientation by adjusting the Brønsted acidity at the catalyst surface, to break the proton transfer limitation of neutral oxygen electrocatalysis.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Shanghai for Science and Technology, Institute of Energy Material Science, Shanghai 200093, Shanghai, CHINA.
Rechargeable zinc batteries (RZBs) are hindered by two primary challenges: instability of Zn anode and deterioration of the cathode structure in traditional aqueous electrolytes, largely attributable to the decomposition of active H2O. Here, we design and synthesize a non-flammable water-in-dimethyl sulfoxide electrolyte to address these issues. X-ray absorption spectroscopy, in situ techniques and computational simulations demonstrate that the activity of H2O in this electrolyte is extremely compressed, which not only suppresses the side reactions and increases the reversibility of Zn anode, but also diminishes the cathode dissolution and proton intercalation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!