A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhancing HO Tolerance and Separation Performance through the Modification of the Polyamide Layer of a Thin-Film Composite Nanofiltration Membrane by Using Graphene Oxide. | LitMetric

Through interfacial polymerization (IP), a polyamide (PA) layer was synthesized on the top of a commercialized polysulfone substrate to form a thin-film composite (TFC) nanofiltration membrane. Graphene oxide (GO) was dosed during the IP process to modify the NF membrane, termed TFC-GO, to enhance oxidant resistance and membrane performance. TFC-GO exhibited increased surface hydrophilicity, water permeability, salt rejection, removal efficiency of pharmaceutical and personal care products (PPCPs), and HO resistance compared with TFC. When HO exposure was 0-96,000 ppm-h, the surfaces of the TFC and TFC-GO membranes were damaged, and swelling was observed using scanning electron microscopy. However, the permeate flux of TFC-GO remained stable, with significantly higher NaCl, MgSO, and PPCP rejection with increasing HO exposure intensity than TFC, which exhibited a 3.5-fold flux increase with an approximate 50% decrease in salt and PPCP rejection. GO incorporated into a PA layer could react with oxidants to mitigate membrane surface damage and increase the negative charge on the membrane surface, resulting in the enhancement of the electrostatic repulsion of negatively charged PPCPs. This hypothesis was confirmed by the significant decrease in PPCP adsorption onto the surface of TFC-GO compared with TFC. Therefore, TFC-GO membranes exhibited superior water permeability, salt rejection, and PPCP rejection and satisfactory resistance to HO, indicating its great potential for practical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8398487PMC
http://dx.doi.org/10.3390/membranes11080592DOI Listing

Publication Analysis

Top Keywords

ppcp rejection
12
polyamide layer
8
thin-film composite
8
nanofiltration membrane
8
membrane graphene
8
graphene oxide
8
water permeability
8
permeability salt
8
salt rejection
8
compared tfc
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!