Assessment of an Integrated and Sustainable Multistage System for the Treatment of Poultry Slaughterhouse Wastewater.

Membranes (Basel)

Malutsa (Pty) Ltd., c/o Oude Pont and Meent Street (Malutsa House), Wellington Industrial Park, Wellington 7655, South Africa.

Published: July 2021

This paper assesses the performance of an integrated multistage laboratory-scale plant, for the treatment of poultry slaughterhouse wastewater (PSW). The system was comprised of an eco-flush dosed bio-physico pre-treatment unit for fats, oil, and grease (FOG) hydrolysis prior to the PSW being fed to a down-flow expanded granular bed reactor (DEGBR), coupled to a membrane bioreactor (DEGBR-MBR). The system's configuration strategy was developed to achieve optimal PSW treatment by introducing the enzymatic pre-treatment unit for the lipid-rich influent (PSW) in order to treat FOG including odour causing constituents such as HS known to sour anaerobic digestion (AD) such that the PSW pollutant load is alleviated prior to AD treatment. This was conducted to aid the reduction in clogging and sludge washout in the DEGBR-MBR systems and to achieve the optimum reactor and membrane system performance. A performance for the treatment of PSW after lipid reduction was conducted through a qualitative analysis by assessing the pre- and post-pre-treatment units' chemical oxygen demand (COD), total suspended solids (TSS), and FOG concentrations across all other units and, in particular, the membrane units. Furthermore, a similar set-up and operating conditions in a comparative study was also performed. The pre-treatment unit's biodelipidation abilities were characterised by a mean FOG removal of 80% and the TSS and COD removal reached 38 and 56%, respectively. The final acquired removal results on the DEGBR, at an OLR of ~18-45 g COD/L.d, was 87, 93, and 90% for COD, TSS, and FOG, respectively. The total removal efficiency across the pre-treatment-DEGBR-MBR units was 99% for COD, TSS, and FOG. Even at a high OLR, the pre-treatment-DEGBR-MBR train seemed a robust treatment strategy and achieved the effluent quality set requirements for effluent discharge in most countries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8399709PMC
http://dx.doi.org/10.3390/membranes11080582DOI Listing

Publication Analysis

Top Keywords

tss fog
12
treatment poultry
8
poultry slaughterhouse
8
slaughterhouse wastewater
8
pre-treatment unit
8
cod tss
8
treatment
6
psw
6
fog
6
assessment integrated
4

Similar Publications

This study evaluated the effects of sludge retention time (SRT) on the membrane filtration performance of an anaerobic membrane bioreactor (AnMBR) fed lipid-rich synthetic dairy wastewater. The membrane filtration performance was evaluated in two AnMBR systems operated at two different SRTs, i.e.

View Article and Find Full Text PDF

Assessment of an Integrated and Sustainable Multistage System for the Treatment of Poultry Slaughterhouse Wastewater.

Membranes (Basel)

July 2021

Malutsa (Pty) Ltd., c/o Oude Pont and Meent Street (Malutsa House), Wellington Industrial Park, Wellington 7655, South Africa.

This paper assesses the performance of an integrated multistage laboratory-scale plant, for the treatment of poultry slaughterhouse wastewater (PSW). The system was comprised of an eco-flush dosed bio-physico pre-treatment unit for fats, oil, and grease (FOG) hydrolysis prior to the PSW being fed to a down-flow expanded granular bed reactor (DEGBR), coupled to a membrane bioreactor (DEGBR-MBR). The system's configuration strategy was developed to achieve optimal PSW treatment by introducing the enzymatic pre-treatment unit for the lipid-rich influent (PSW) in order to treat FOG including odour causing constituents such as HS known to sour anaerobic digestion (AD) such that the PSW pollutant load is alleviated prior to AD treatment.

View Article and Find Full Text PDF

This study presents the biological treatment of poultry slaughterhouse wastewater (PSW) using a combination of a biological pretreatment stage, an expanded granular sludge bed reactor (EGSB), and a membrane bioreactor (MBR) to treat PSW. This PSW treatment was geared toward reducing the concentration of contaminants present in the PSW to meet the City of Cape Town (CoCT) discharge standards and evaluate an alternative means of treating medium- to high-strength wastewater at low cost. The EGSB used in this study was operated under mesophilic conditions and at an organic loading rate (OLR) of 69 to 456 mg COD/L·h.

View Article and Find Full Text PDF

Anaerobic digestion (AD) is the biological preferred treatment applied to Slaughterhouse wastewaters (SWW) due to its effectiveness. The aim of the study is to investigate the effect of different percentages of fats, oil and grease (FOG) on biomethane production in anaerobic co-digestion with slaughterhouse wastewater using BMP tests under mesophilic conditions (35 °C). For this purpose, three percentages of FOG from 1% to 10% were tested.

View Article and Find Full Text PDF

Characterisation of food service establishment wastewater and its implication for treatment.

J Environ Manage

December 2019

Cranfield University, College Road, Cranfield - Bedfordshire, MK43 0AL, UK; De Montfort University, Institute of Energy and Sustainable Development, Leicester, LE1 9HB, UK. Electronic address:

Essential for the selection of a reliable treatment system is the characterisation of the effluent to treat. Kitchen wastewater (KWW) from food service establishments (FSEs) is a strong organic and fat-rich effluent whose characterisation has not been sufficiently addressed. KWW composition is highly variable and linked to the FSE's size, the type of meals prepared and the amount of water used during the cleaning.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!