Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Generation of useful variables and features is an important issue throughout the machine learning, artificial intelligence, and applied fields for their efficient computations. In this paper, the nearest neighbor relations are proposed for the minimal generation and the reduced variables of the functions in the threshold networks. First, the nearest neighbor relations are shown to be minimal and inherited for threshold functions and they play an important role in the iterative generation of the Chow parameters. Further, they give a solution for the Chow parameters problem. Second, convex cones are made of the nearest neighbor relations for the generation of the reduced variables. Then the edges of convex cones are compared for the discrimination of variables. Finally, the reduced variables based on the nearest neighbor relations are shown to be useful for documents classification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1142/S0129065721500453 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!