Alzheimer's disease (AD), which is recognised as a devastating neurodegenerative disease throughout the world and lack of effective treatments, is a growing concern in modern society with a growing population of elderly patients. A growing number of studies reveal that abnormal accumulation and deposition of Aβ is responsible for AD. Inspired by this, strategies for the treatment of AD targeting-Aβ clearance have been discussed for a long period, exploring new drugs which is capable of destroying soluble Aβ oligomers and unsolvable Aβ aggregates. In this paper, results of recent clinical trials on several anti-amyloid-β drugs are presented and several emerging anti-amyloid AD therapies based on recent studies are reviewed. Furthermore, some of the current challenges and novel strategies to prevent AD are addressed. Herein, this review focuses on current pharmacotherapy of AD targeting-Aβ and intends to design a promising therapeutic agent for AD treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1080/1061186X.2021.1973482DOI Listing

Publication Analysis

Top Keywords

novel strategies
8
alzheimer's disease
8
strategies fight
4
fight alzheimer's
4
disease targeting
4
targeting amyloid-β
4
amyloid-β protein
4
protein alzheimer's
4
disease recognised
4
recognised devastating
4

Similar Publications

An Efficient and Cost-Effective Novel Strategy for Identifying CRISPR-Cas-Mediated Mutants in Plant Offspring.

CRISPR J

January 2025

Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, China.

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 system has revolutionized targeted mutagenesis, but screening for mutations in large sample pools can be time-consuming and costly. We present an efficient and cost-effective polymerase chain reaction (PCR)-based strategy for identifying edited mutants in the T generation. Unlike previous methods, our approach addresses the challenges of large progeny populations by using T generation sequencing results for genotype prediction.

View Article and Find Full Text PDF

Purpose: To investigate potential modes of programmed cell death in the lens epithelial cells (LECs) of patients with early age-related cortical cataract (ARCC) and to explore early-stage intervention strategies.

Methods: Anterior lens capsules were collected from early ARCC patients for comprehensive analysis. Ultrastructural examination of LECs was performed using transmission electron microscopy.

View Article and Find Full Text PDF

Integrating machine learning with mendelian randomization for unveiling causal gene networks in glioblastoma multiforme.

Discov Oncol

January 2025

Department of Medical Imaging, Shenzhen Longhua District Key Laboratory of Neuroimaging, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China.

Background: Glioblastoma multiforme (GBM) is a highly aggressive brain cancer with poor prognosis and limited treatment options. Despite advances in understanding its molecular mechanisms, effective therapeutic strategies remain elusive due to the tumor's genetic complexity and heterogeneity.

Methods: This study employed a comprehensive analysis approach integrating 113 machine learning algorithms with Mendelian Randomization (MR) analysis to investigate the molecular underpinnings of GBM.

View Article and Find Full Text PDF

Unlabelled: Group A (GAS) is a major human pathogen that causes several invasive diseases including necrotizing fasciitis. The host coagulation cascade initiates fibrin clots to sequester bacteria to prevent dissemination into deeper tissues. GAS, especially skin-tropic bacterial strains, utilize specific virulence factors, plasminogen binding M-protein (PAM) and streptokinase (SK), to manipulate hemostasis and activate plasminogen to cause fibrinolysis and fibrin clot escape.

View Article and Find Full Text PDF

Genetics of Prader-Willi and Angelman syndromes: 2024 update.

Curr Opin Psychiatry

December 2024

Departments of Psychiatry &, Behavioral Sciences and Pediatrics, University of Kansas Medical Centre, Kansas City, Kansas, United States.

Purpose Of Review: Prader-Willi (PWS) and Angelman (AS) syndromes arise from errors in 15q11-q13 imprinting. This review describes recent advances in genomics and how these expand our understanding of these rare disorders, guiding treatment strategies to improve patient outcomes.

Recent Findings: PWS features include severe infantile hypotonia, failure to thrive, hypogonadism, developmental delay, behavioral and psychiatric features, hyperphagia, and morbid obesity, if unmanaged.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!