A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionsba1bmvsorc96b8flmqu4gdgsrpn4345): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

E2EDNA: Simulation Protocol for DNA Aptamers with Ligands. | LitMetric

E2EDNA: Simulation Protocol for DNA Aptamers with Ligands.

J Chem Inf Model

Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.

Published: September 2021

We present E2EDNA, a simulation protocol and accompanying code for the molecular biophysics and materials science communities. This protocol is both easy to use and sufficiently efficient to simulate single-stranded (ss)DNA and small analyte systems that are important to cellular processes and nanotechnologies such as DNA aptamer-based sensors. Existing computational tools used for aptamer design focus on cost-effective secondary structure prediction and motif analysis in the large data sets produced by SELEX experiments. As a rule, they do not offer flexibility with respect to the choice of the theoretical engine or direct access to the simulation platform. Practical aptamer optimization often requires higher accuracy predictions for only a small subset of sequences suggested, e.g., by SELEX experiments, but in the absence of a streamlined procedure, this task is extremely time and expertise intensive. We address this gap by introducing E2EDNA, a computational framework that accepts a DNA sequence in the FASTA format and the structures of the desired ligands and performs approximate folding followed by a refining step, analyte complexation, and molecular dynamics sampling at the desired level of accuracy. As a case study, we simulate a DNA-UTP (uridine triphosphate) complex in water using the state-of-the-art AMOEBA polarizable force field. The code is available at https://github.com/InfluenceFunctional/E2EDNA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9536994PMC
http://dx.doi.org/10.1021/acs.jcim.1c00696DOI Listing

Publication Analysis

Top Keywords

e2edna simulation
8
simulation protocol
8
selex experiments
8
protocol dna
4
dna aptamers
4
aptamers ligands
4
ligands e2edna
4
protocol accompanying
4
accompanying code
4
code molecular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!