The purpose of this project was to provide a profile of DNA, RNA, and protein content in adipose tissue, which is relatively understudied in humans, to gain more insight into the amount of tissue that may be required for various analyses. Skeletal muscle tissue was also investigated to provide a direct comparison into potential differences between these two highly metabolically active tissues. Basal adipose and skeletal muscle tissue samples were obtained from 10 (7 M, 3 W) recreationally active participants [25 ± 1 yr; 84 ± 3 kg, maximal oxygen consumption (V̇o): 3.5 ± 0.2 L/min, body fat: 29 ± 2%]. DNA, RNA, and protein were extracted and subsequently analyzed for quantity and quality. DNA content of adipose and skeletal muscle tissue was 52 ± 14 and 189 ± 44 ng DNA·mg tissue, respectively ( < 0.05). RNA content of adipose and skeletal muscle tissue was 46 ± 14 and 537 ± 72 ng RNA·mg tissue, respectively ( < 0.05). Protein content of adipose and skeletal muscle tissue was 4 ± 1 and 177 ± 10 µg protein·mg tissue, respectively ( < 0.05). In summary, human adipose had 28% of the DNA, 9% of the RNA, and 2% of the protein found in skeletal muscle per mg of tissue. This information should be useful across a wide range of human clinical investigation designs and various laboratory analyses. This investigation studied DNA, RNA, and protein contents of adipose and skeletal muscle tissues from young active individuals. A series of optimization steps were investigated to aid in determining the optimal approach to extract high-yield and high-quality biomolecules. These findings contribute to the knowledge gap in adipose tissue requirements for molecular biology assays, which is of increasing importance due to the growing interest in adipose tissue research involving human exercise physiology research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8560392 | PMC |
http://dx.doi.org/10.1152/japplphysiol.00343.2021 | DOI Listing |
Eat Weight Disord
January 2025
Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Objective: This systematic review explores the intricate relationship between body composition, with a specific focus on skeletal muscle mass, and vascular health indices, including measures of arterial stiffness-pulse wave velocity (PWV) and cardio-ankle vascular index (CAVI)-as well as arterial structure, specifically carotid artery intima-media thickness (cIMT).
Methods: An extensive literature search, encompassing PubMed, Scopus, EMBASE, Web of Science, and Google Scholar, was conducted until January 2024. Inclusion criteria involved original observational studies, with cross-sectional or longitudinal designs, reporting body composition parameters and vascular health measures.
Br J Radiol
January 2025
Department of Hepatobiliary Surgery, Institute of Liver and Biliary Sciences, New Delhi.
Objectives: To study the correlation between sarcopenia and hypertrophy of the future liver remnant(FLR) in patients undergoing portal vein embolization(PVE) before liver resection, and to assess the outcomes after resection.
Methods: This retrospective study examined patients underwent PVE from May 2012 to May 2023. Demographic, clinical and laboratory features were documented and total liver volumes(TLV) and FLR volumes were measured before and 2-4 weeks after PVE.
Nutr Bull
January 2025
Curtin School of Population Health, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia.
Sarcopenic obesity (SO) is a body composition phenotype derived from the simultaneous presence in the same individual of an increase in fat mass and a decrease in skeletal muscle mass and/or function. Several protocols for the diagnosis of SO have been proposed in the last two decades making prevalence and disease risk estimates of SO heterogeneous and challenging to interpret. Dementia is a complex neurological disorder that significantly impacts patients, carers and healthcare systems.
View Article and Find Full Text PDFMol Ther
January 2025
School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Chinese Institute for Brain Research, Beijing 102206, China. Electronic address:
The development of efficient and targeted methods for delivering DNA in vivo has long been a major focus of research. In this study, we introduce a gene Delivery approach Admitted by small Metabolites, named gDAM, for the efficient and targeted delivery of naked DNA into astrocytes in the adult brains of mice. gDAM utilizes a straightforward combination of DNA and small metabolites, including glycine, L-proline, L-serine, L-histidine, D-alanine, Gly-Gly, and Gly-Gly-Gly, to achieve astrocyte-specific delivery of naked DNA, resulting in transient and robust gene expression in these cells.
View Article and Find Full Text PDFBMC Anesthesiol
January 2025
Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China.
Background: Patients with sepsis in the intensive care unit (ICU) often experience rapid muscle loss. The urea-to-creatinine ratio (UCR) is thought to reflect muscle breakdown (creatinine) and catabolism (urea) and is commonly used to assess nutritional and metabolic status. This study aimed to investigate whether changes in UCR (ΔUCR) can predict the development of rapid muscle loss in patients with sepsis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!