Trelagliptin ameliorates oxygen-glucose deprivation/reperfusion (OGD/R)-induced mitochondrial dysfunction and metabolic disturbance of endothelial cells.

Hum Cell

The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, #15 Dazhong Street, Liandu District, Lishui City, 323000, Zhejiang, China.

Published: November 2021

Acute myocardial infarction (AMI) is a severe cardiovascular disease with high mortality. It is reported to be closely related to the mitochondrial dysfunction and metabolic disturbance on endothelial cells under a chronic hypoxic state. Significant declined mitochondrial respiration, ATP production, and metabolic changes are the main characteristics of endothelial injury in the disease. Trelagliptin is a DPP-4 inhibitor applied for the treatment of type II diabetes and has been recently reported to exert various pharmacological properties. In this investigation, we examined whether Trelagliptin possessed a protective effect against mitochondrial dysfunction and metabolic disturbance in human aortic valvular endothelial cells (HAVECs) under oxygen-glucose deprivation/reperfusion (OGD/R) conditions. We found that both the cytotoxicity and mitochondrial oxidative stress in HAVECs induced by OGD/R stimulation were greatly alleviated by Trelagliptin. In addition, the declined mitochondrial respiration and ATP production decreased secretion of cystathionine and creatine, and the increased production of triglyceride and adiponectin in OGD/R-challenged HAVECs was dramatically reversed by Trelagliptin, accompanied by the upregulated expression level of PGC-1α and CPT-1. Lastly, the AMPK pathway was observed to be significantly activated in OGD/R-challenged HAVECs by Trelagliptin treatment. After co-administration of the inhibitor of the AMPK pathway, the effects of Trelagliptin on mitochondrial function and metabolic alterations were significantly abolished. Taken together, our data indicate that Trelagliptin ameliorated OGD/R-induced mitochondrial disturbance and metabolic changes by activating the AMPK pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13577-021-00594-0DOI Listing

Publication Analysis

Top Keywords

mitochondrial dysfunction
12
dysfunction metabolic
12
metabolic disturbance
12
endothelial cells
12
ampk pathway
12
trelagliptin
8
oxygen-glucose deprivation/reperfusion
8
mitochondrial
8
ogd/r-induced mitochondrial
8
disturbance endothelial
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!