Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Research in ultrahigh magnetic field strength combined with ultrahigh and ultrafast gradient technology has provided enormous gains in sensitivity, resolution, and contrast for neuroimaging. This article provides an overview of the technical advantages and challenges of performing clinical neuroimaging studies at ultrahigh magnetic field strength combined with ultrahigh and ultrafast gradient technology. Emerging clinical applications of 7-T MRI and state-of-the-art gradient systems equipped with up to 300 mT/m gradient strength are reviewed, and the impact and benefits of such advances to anatomical, structural and functional MRI are discussed in a variety of neurological conditions. Finally, an outlook and future directions for ultrahigh field MRI combined with ultrahigh and ultrafast gradient technology in neuroimaging are examined.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8387544 | PMC |
http://dx.doi.org/10.1186/s41747-021-00216-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!