Detection of anticancer drug (doxorubicin) using an electrochemical sensor is developed based on a transition metal vanadate's related carbon composite material. With an environmentally friendly process, we have synthesized a metal oxide composite of iron vanadate nanoparticle assembled with sulfur-doped carbon nanofiber (FeV/SCNF). The FeV/SCNF composite was characterized using XRD, TEM, FESEM with elemental mapping, XPS and EDS. In contrast to other electrodes reported in the literature, a much-improved electrochemical efficiency is shown by FeV/SCNF composite modified electrodes. Amperometric technique has been employed at 0.25 V (vs. Ag/AgCl) for the sensitive detection of DOX within a wide range of 20 nM-542.5 μM and it possesses enhanced selectivity in presence of common interferents. The modified electrochemical sensors show high sensitivity of 46.041 μA μM cm. The newly developed sensor could be used for the determination of doxorubicin in both blood serum and drug formulations with acceptable results, suggesting its feasibility for real-time applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00604-021-04950-7 | DOI Listing |
Langmuir
January 2025
Materials Science and Technology Division, CSIR─National Institute for Interdisciplinary Science and Technology, Pappanamcode, Thiruvananthapuram 695019, Kerala, India.
Mercury contamination of the environment is extremely hazardous to human health because of its significant toxicity, especially in water. Biomass-derived fluorophores such as carbon dots (CDs) have emerged as eco-friendly and cost-effective alternative sensors that provide comparable efficacy while mitigating the environmental and economic drawbacks of conventional methods. In this work, we report the fabrication of a selective fluorescence-enhancing sensor based on sulfur-doped carbon dots (SCDs) using waste bamboo-derived cellulose and sodium thiosulfate as the soft base dopant, which actively complexes with mercury ions for detection.
View Article and Find Full Text PDFTalanta
December 2024
Faculty of Chemistry, University of Mazandaran, Babolsar, Iran. Electronic address:
Preparation of carbon dots (CDs) from biomass waste is of great interest due to its low cost synthesis, environmental compatibility and functionalization without adding dangerous chemicals. Herein, S-doped carbon dot (SCD) was synthesized using agricultural waste as carbon precursors and modified in-situ with rhodamine B dye (SCD@RHB) to construct efficient flouresent probe. SCD@RHB was loaded into HKUST-1 metal-organic framework (SCD@RHB/HKUST-1) and the probe was employed as ratiometric flouresent (RF) sensor for the determination of ciprofloxacin (CIP) antibiotic in trace level.
View Article and Find Full Text PDFSci Rep
December 2024
College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China.
A cost-effective industrial TiOSO solution was employed to fabricate visible light active sulfur-doped titanium dioxide (S-TiO) via a facile hydrothermal method. The effect of calcination temperature on morphology, particle size, crystallinity, and photocatalytic property of S-TiO was systematically investigated. Successful incorporation of sulfur into TiO was confirmed by carbon-sulfur analysis, X-ray photoelectron spectroscopy (XPS), and Energy dispersive spectrometer (EDS).
View Article and Find Full Text PDFNanoscale
December 2024
Materials Genome Institute, Shanghai Engineering Research Center of Organ Repair and Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai University, Shanghai 200444, China.
Circularly polarized luminescence (CPL) is a fascinating luminescence phenomenon that has garnered significant research attention for chiroptical applications. In this study, we developed a highly sensitive chiroptical sensor by co-assembling G-quartet nanofibers and nonchiral nitrogen sulfur-doped carbon dots (N-S-CDs) for dual ion detection. The N-S-CDs were synthesized using the one-step microwave method, and a helical G-quartet-based nanofiber structure (g-fiber) was simultaneously formed from guanosine 5'-monophosphate (GMP) in the presence of Sr.
View Article and Find Full Text PDFEnviron Res
November 2024
State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
To alleviate situation caused by azo dyestuff and antibiotics, a series of CdS/sulfur doped carbon nitride (GCNS) S-scheme heterojunction photocatalysts have been successfully fabricated by a pretty facile solid-state diffusion (SSD) method,. Under visible light, the optimal sample called CdS/GCNS-1:2 presented the best photodegradation rate of nearly 100% over methyl orange (MO), of which the reaction constant k was about 9.67 and 5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!