AI Article Synopsis

  • Radiomics is a method that utilizes computer algorithms to extract a large number of quantitative features from medical images, creating unique disease patterns, or "digital fingerprints."
  • This field is driven by advancements in data analytics and artificial intelligence, particularly within abdominal radiology, to enhance our understanding of imaging characteristics that are challenging to interpret visually.
  • The process of radiomic phenotyping consists of five phases, with guidance on how to address potential issues like variability and errors to ensure accurate and replicable results.

Article Abstract

Radiomics is a high-throughput approach to image phenotyping. It uses computer algorithms to extract and analyze a large number of quantitative features from radiological images. These radiomic features collectively describe unique patterns that can serve as digital fingerprints of disease. They may also capture imaging characteristics that are difficult or impossible to characterize by the human eye. The rapid development of this field is motivated by systems biology, facilitated by data analytics, and powered by artificial intelligence. Here, as part of Abdominal Radiology's special issue on Quantitative Imaging, we provide an introduction to the field of radiomics. The technique is formally introduced as an advanced application of data analytics, with illustrating examples in abdominal radiology. Artificial intelligence is then presented as the main driving force of radiomics, and common techniques are defined and briefly compared. The complete step-by-step process of radiomic phenotyping is then broken down into five key phases. Potential pitfalls of each phase are highlighted, and recommendations are provided to reduce sources of variation, non-reproducibility, and error associated with radiomics.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00261-021-03254-xDOI Listing

Publication Analysis

Top Keywords

image phenotyping
8
data analytics
8
artificial intelligence
8
radiomics
5
radiomics primer
4
primer high-throughput
4
high-throughput image
4
phenotyping radiomics
4
radiomics high-throughput
4
high-throughput approach
4

Similar Publications

Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.

View Article and Find Full Text PDF

Background: Cardiac magnetic resonance (CMR) is essential for diagnosing cardiomyopathy, serving as the gold standard for assessing heart chamber volumes and tissue characterization. Hemodynamic forces (HDF) analysis, a novel approach using standard cine CMR images, estimates energy exchange between the left ventricular (LV) wall and blood. While prior research has focused on peak or mean longitudinal HDF values, this study aims to investigate whether unsupervised clustering of HDF curves can identify clinically significant patterns and stratify cardiovascular risk in non-ischemic LV cardiomyopathy (NILVC).

View Article and Find Full Text PDF

Three-dimensional multicellular aggregates (MCAs) like organoids and spheroids have become essential tools to study the biological mechanisms involved in the progression of diseases. In cancer research, they are now widely used as in vitro models for drug testing. However, their analysis still relies on tedious manual procedures, which hinders their routine use in large-scale biological assays.

View Article and Find Full Text PDF

Rationale: Developmental and epileptic encephalopathy (DEE) defines a group of severe and heterogeneous neurodevelopmental disorders. The voltage-gated potassium channel subfamily 2 voltage-gated potassium channel α subunit encoded by the KCNB1 gene is essential for neuronal excitability. Previous studies have shown that KCNB1 variants can cause DEE.

View Article and Find Full Text PDF

Diffraction imaging of cells allows rapid phenotyping by the response of intracellular molecules to coherent illumination. However, its ability to distinguish numerous types of human leukocytes remains to be investigated. Here, we show that accurate classification of three lymphocyte subtypes can be achieved with features extracted from cross-polarized diffraction image (p-DI) pairs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!