Recently, molecular covalent docking has been extensively developed to design new classes of inhibitors that form chemical bonds with their biological targets. This strategy for the design of such inhibitors, in particular boron-based inhibitors, holds great promise for the vast family of β-lactamases produced, , by Gram-negative antibiotic-resistant bacteria. However, the description of covalent docking processes requires a quantum-mechanical approach, and so far, only a few studies of this type have been presented. This study accurately describes the covalent docking process between two model inhibitors - representing two large families of inhibitors based on boronic-acid and bicyclic boronate scaffolds, and three β-lactamases which belong to the A, C, and D classes. Molecular fragments containing boron can be converted from a neutral, trigonal, planar state with sp hybridization to the anionic, tetrahedral sp state in a process sometimes referred to as . This study applies multi-scale modeling methods, in particular, the hybrid QM/MM approach which has predictive power reaching well beyond conventional molecular modeling. Time-dependent QM/MM simulations indicated several structural changes and geometric preferences, ultimately leading to covalent docking processes. With current computing technologies, this approach is not computationally expensive, can be used in standard molecular modeling and molecular design works, and can effectively support experimental research which should allow for a detailed understanding of complex processes important to molecular medicine. In particular, it can support the rational design of covalent boron-based inhibitors for β-lactamases as well as for many other enzyme systems of clinical relevance, including SARS-CoV-2 proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8380965PMC
http://dx.doi.org/10.3389/fmolb.2021.633181DOI Listing

Publication Analysis

Top Keywords

covalent docking
20
boron-based inhibitors
12
hybrid qm/mm
8
qm/mm simulations
8
docking processes
8
molecular modeling
8
inhibitors
7
molecular
6
docking
5
covalent
5

Similar Publications

In the last few years, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been the cause of a worldwide pandemic, highlighting the need for novel antiviral agents. The main protease (M) of SARS-CoV-2 was immediately identified as a crucial enzyme for viral replication and has been validated as a drug target. Here, we present the design and synthesis of peptidomimetic M covalent inhibitors characterized by quinoline-based P moieties.

View Article and Find Full Text PDF

DPP4 is an enzyme with multiple natural substrates and probable involvement in various mechanisms. It constitutes a drug target for the treatment of diabetes II, although, also related to other disorders. While a number of drugs with competitive inhibitory action and covalent binding capacity are available, undesired side effects exist partly attributed to drug kinetics, and research for finding novel, potent, and safer compounds continues.

View Article and Find Full Text PDF

In this study, we explored the binding mechanism between tannic acid (TA) and gluten to apply TA as an ingredient in bread-making to evaluate its baking performance and starch digestion. The interaction was systematically investigated by analyzing binding affinity, binding mode, and matrix structure of the TA-gluten complex using fluorescence quenching, molecular docking, and confocal laser scanning microscopy. TA strongly interacted with gluten via non-covalent interactions, mainly hydrogen bonds, and formed the major hydrogen bonds with six different glutamines (Q32, Q108, Q313, Q317, Q317, and Q349), which play a critical role in gluten network construction among amino acid residues of gluten.

View Article and Find Full Text PDF

Molecular Design, Synthesis and Anti-cancer Activity of Novel Pyrazolo[3,4-b]pyridine-based Glycohybrid Molecules.

Bioorg Chem

January 2025

Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India; Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India. Electronic address:

Molecular hybridization is an emerging strategy in medicinal chemistry for designing new bioactive molecules that link pharmacophores covalently and shows synergistic enhanced properties. Herein, we have developed pyrazolo[3,4-b]pyridine-based new glycohybrids considering the Warburg effect. A microwave-assisted, copper-catalyzed efficient synthesis of new triazole-linked glycohybrids based on pyrazolo[3,4-b]pyridines scaffold was achieved successfully in high yields with inherent stereochemical diversity from d-glucose, d-galactose, and d-mannose.

View Article and Find Full Text PDF

Identifying a non-conserved site for achieving allosteric covalent inhibition of CECR2.

Acta Pharmacol Sin

January 2025

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.

The bromodomain (BRD) represents a highly conserved structural module that provides BRD proteins with fundamental functionality in modulating protein-protein interactions involved in diverse biological processes such as chromatin-mediated gene transcription, DNA recombination, replication and repair. Consequently, dysregulation of BRD proteins has been implicated in the pathogenesis of numerous human diseases. In recent years, considerable scientific endeavors have focused on unraveling the molecular mechanisms underlying BRDs and developing inhibitors that target these domains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!