Genetically Modified (GM) foods are becoming the future of agriculture on surviving global natural disasters and climate change by their enhanced production efficiency and improved functional properties. On the other hand, their adverse health and environmental effects, ample evidence on transgene leakage of Genetically Modified Organisms (GMOs) to crops have raised questions on their benefits and risks. Consequently, low-cost, reliable, rapid, and practical detection of GMOs have been important. GMO-detection platforms should be capable of stably storing detection reagents for long-delivery distances with varying ambient temperatures. In this study, we developed an event-specific, closed tube colorimetric GMO detection method based on Loop-Mediated Isothermal Amplification (LAMP) technique which can be integrated into GMO-detection platforms. The entire detection process optimized to 30 min and isothermally at 65 °C. The durability of the LAMP mixture in the test tubes showed that the LAMP reaction mixture, in which polymerase and DNA sample was later included, yielded DNA amplicons for 3 days at room temperature, and for 6 days at 4 °C.•Simple, stable, and cheap storage method of LAMP reaction mixture for GMO-detection technologies.•GMO-detection platforms can stably store detection reagents for long-delivery distances with varying ambient temperatures.•Any DNA sample can be used in the field or resource-limited setting by untrained personnel.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8374247 | PMC |
http://dx.doi.org/10.1016/j.mex.2021.101282 | DOI Listing |
Sci Rep
January 2025
CrisprBits Private Limited, 3rd Floor, Plot No.-3, F-301, Ashish Complex, LSC, New Rajdhani Enclave, East Delhi, Delhi, 110092, India.
The rapid and early detection of infections and antibiotic resistance markers is a critical challenge in healthcare. Currently, most commercial diagnostic tools for analyzing antimicrobial resistance patterns of pathogens require elaborate culture-based testing. Our study aims to develop a rapid, accurate molecular detection system that can be used directly from culture, thereby introducing molecular testing in conjunction with culture tests to reduce turnaround time and guide therapy.
View Article and Find Full Text PDFAm J Trop Med Hyg
December 2024
Department of Pathogenic Biology, Basic Medical College, Naval Medical University, Shanghai, China.
Rapidly identifying Anopheles-carrying malaria parasites is crucial for imported malaria prevention. However, suitable methods still lack quick detection in limited-resource situations. In this study, disc microfluidic isothermal amplification integrating loop-mediated isothermal amplification (LAMP) and microfluidic chip technology were applied to develop rapid and precise detection with low resource requirements.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, United States of America.
Nucleic-acid biosensors have emerged as useful tools for on-farm detection of foodborne pathogens on fresh produce. Such tools are specifically designed to be user-friendly so that a producer can operate them with minimal training and in a few simple steps. However, one challenge in the deployment of these biosensors is delivering precise sample volumes to the biosensor's reaction sites.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
December 2024
Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.
Malaria, a parasitic disease caused by Plasmodium spp. and transmitted by Anopheles mosquitoes, remains a major global health issue, with an estimated 249 million cases and 608,000 deaths in 2022. Rapid and accurate diagnosis and treatment are crucial for malaria control and elimination.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hunghom, Hong Kong, China.
The genus comprises fungal species closely related to , with and being medically important. These species can cause infections in both immunocompetent and immunocompromised individuals. The current detection methods are limited, prompting the need for rapid and specific diagnostic tools.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!