Experimental dependency of the photosystem's response on the wavelength of exciting radiation, also known as action spectrum, may be substantially affected by the spectrum shape of this radiation. This is especially important in the case, when different radiation sources are used for the investigation of action spectrum. For instance, too wide emission peaks of radiation sources can blur the scopes of actual action spectrum and distort information about the properties of photosystem at certain wavelength regions. Here, we propose a method for the correction of experimental action spectrum by the recalculation of experimental data of photoresponse according to actual spectra of exciting radiation. In the case of overlapping radiation spectra from different radiation sources, this method results in much better correlation of experimental action spectrum to actual action spectrum or absorption spectrum of photosystem. The data on photoactivity of several photocatalysts are presented to illustrate and validate the proposed method.•Activity of photosystem depends on the actual spectrum of the radiation source•Single-peak optical radiation sources with the same basic wavelength may cause a different photoactivity•Effect of actual spectrum of the light source on the photoactivity is to be considered.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8374188 | PMC |
http://dx.doi.org/10.1016/j.mex.2021.101221 | DOI Listing |
Adv Mater
January 2025
Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
Cancer immunotherapy, which leverages immune system components to treat malignancies, has emerged as a cornerstone of contemporary therapeutic strategies. Yet, critical concerns about the efficacy and safety of cancer immunotherapies remain formidable. Nanotechnology, especially polymeric nanoparticles (PNPs), offers unparalleled flexibility in manipulation-from the chemical composition and physical properties to the precision control of nanoassemblies.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Plant Breeding and Acclimatization Institute-National Research Institute, Radzikow, 05-870 Blonie, Poland.
Diagnostics (Basel)
December 2024
Computer Science Department, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia.
Autism spectrum disorder (ASD) is a group of developmental disorders characterized by poor social skills, low motivation in activities, and a lack of interaction with others. Traditional intervention approaches typically require support under the direct supervision of well-trained professionals. However, teaching and training programs for children with ASD can also be enhanced by assistive technologies, artificial intelligence, and robotics.
View Article and Find Full Text PDFMolecules
December 2024
School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
Multidrug-resistant (MDR) bacteria are becoming more and more common, which presents a serious threat to world health and could eventually render many of the antibiotics we currently use useless. The research and development of innovative antimicrobial tactics that can defeat these hardy infections are imperative in light of this predicament. Antimicrobial peptides (AMPs), which have attracted a lot of attention due to their distinct modes of action and capacity to elude conventional resistance mechanisms, are among the most promising of these tactics.
View Article and Find Full Text PDFMolecules
December 2024
Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy.
Molecular hybridization, which consists of the combination of two or more pharmacophores into a single molecule, is an innovative approach in drug design to afford new chemical entities with enhanced biological activity. In the present study, this strategy was pursued to develop a new series of 6,7-dimethoxy-4-piperazinylquinoline-3-carbonitrile derivatives (-) with potential antibiotic activity by combining the quinoline, the piperazinyl, and the benzoylamino moieties, three recurrent frameworks in antimicrobial research. Initial in silico evaluations were conducted on the designed compounds, highlighting favorable ADMET and drug-likeness properties, which were synthesized through a multistep strategy, isolated, and fully characterized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!