Waste can be defined as solids or liquids unwanted by members of the society and meant to be disposed. In developing countries such as Ghana, the management of waste is the responsibility of the metropolitan authorities. These authorities do not seem to have effective management of the waste situation, and therefore, it is not unusual to see waste clog the drains and litter the streets of the capital city, Accra. The impact of waste on the environment, along with its associated health-related problems, cannot be overemphasized. The Joint Monitoring Programme report in 2015 ranked Ghana as the seventh dirtiest country in the world. The lack of effective waste management planning is evident in the large amount of waste dumped in open areas and gutters that remains uncollected. In planning for solid waste management, reliable data concerning waste generation, influencing factors on waste generation, and a reliable forecast of waste quantities are required. This study used two algorithms, namely, Levenberg-Marquardt and the Bayesian regularization, to estimate the parameters of an artificial neural network model fitted to predict the average monthly waste generated and critically assess the factors that influence solid waste generation in some selected districts of the Greater Accra region. The study found Bayesian regularization algorithm to be suitable with the minimum mean square error of 104.78559 on training data and 217.12465 on test data and higher correlation coefficients (0.99801 on training data, 0.99570 on test data, and 0.99767 on the overall data) between the target variables (average monthly waste generated) and the predicted outputs. House size, districts, employment category, dominant religion, and house type with respective importance of 0.56, 0.172, 0.061, 0.027, and 0.026 were found to be the top five important input variables required for forecasting household waste. It is recommended that efforts of the government and its stakeholders to reduce the amount of waste generated by households be directed at providing bins, increasing the frequency of waste collection (especially in highly populated areas), and managing the economic activities in the top five selected districts (Ledzekuku Krowor, Tema West, Asheidu Keteke, Ashaiman, and Ayawaso West), amongst others.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8382528 | PMC |
http://dx.doi.org/10.1155/2021/8622105 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China.
Sulfur dioxide (SO), a pervasive air pollutant, poses significant environmental and health risks, necessitating advanced materials for its efficient capture. Nanoporous organic polymers (NOPs) have emerged as promising candidates; however, their development is often hindered by high synthesis temperatures, complex precursors, and limited SO selectivity. Herein, we report a room-temperature, cost-effective synthesis of carbazole-based nanoporous organic polymers (CNOPs) using 1,3,5-trioxane and paraldehyde, offering a significant advancement over traditional Friedel-Crafts alkylation methods.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemical and Biomolecular Engineering, Lehigh University, 124 E. Morton Street, Bethlehem, Pennsylvania 18015, United States.
Quantum dot (QD) light-emitting diodes (QLEDs) are promising candidates for next-generation displays because of their high efficiency, brightness, broad color gamut, and solution-processability. Large-scale solution-processing of electroluminescent QLEDs poses significant challenges, particularly concerning the precise control of the active layer's thickness and uniformity. These obstacles directly impact charge transport, leading to current leakage and reduced overall efficiency.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2025
Department of Environmental Health Engineering, Faculty of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
This study aimed to evaluate the concentrations of sulfur dioxide (SO2) and nitrogen oxides (NOX) around the Qom (a province in Iran) combined cycle power plant in relation to seasonal variations and fuel type from December 2014 to May 2015. Passive sampling was used in three monitoring sites around the power plant to assess noncarcinogenic health risks associated with exposure to SO2 and NOX. Results showed the higher concentrations of NOX and SO2 in winter than in spring.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2025
Department of Economics, Hatay Mustafa Kemal University, Hatay, Turkey.
Waste has emerged as a pressing concern for the environment, primarily stemming from the processes of urbanization and industrialization. The substantial volumes of waste generated pose a serious threat to the environment, as they spread out harmful substances in the soil and release methane emissions into the atmosphere. To effectively address this issue, this study explores the impact of municipal and industrial waste, as well as waste-related innovation on the load capacity factor (LCF) from 2005 to 2020.
View Article and Find Full Text PDFEnviron Toxicol Chem
January 2025
School of Energy and Environmental Engineering, University of Science and Technology Beijing, 100083China.
Phthalates, known as phthalate esters (PAEs), are among the most ubiquitous pervasive env7ironmental endocrine disruptors (EEDs), extensively utilized globally in various facets of modern life due to their irreplaceable role as plasticizers. The exponential production and utilization of plastic goods have substantially escalated plastic waste accumulation. Consequently, PAEs have infiltrated the environment, contaminating food and drinking water reservoirs, posing notable threats to human health.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!