Free-living nitrogen-fixing bacteria can improve growth yields of some non-leguminous plants and, if enhanced through bioengineering approaches, have the potential to address major nutrient imbalances in global crop production by supplementing inorganic nitrogen fertilisers. However, nitrogen fixation is a highly resource-costly adaptation and is de-repressed only in environments in which sources of reduced nitrogen are scarce. Here we investigate nitrogen fixation () gene expression and nitrogen starvation response signaling in the model diazotroph () M5a1 during ammonium depletion and the transition to growth on atmospheric N. Exploratory RNA-sequencing revealed that over 50% of genes were differentially expressed under diazotrophic conditions, among which the genes are among the most highly expressed and highly upregulated. Isotopically labelled QconCAT standards were designed for multiplexed, absolute quantification of Nif and nitrogen-stress proteins multiple reaction monitoring mass spectrometry (MRM-MS). Time-resolved Nif protein concentrations were indicative of bifurcation in the accumulation rates of nitrogenase subunits (NifHDK) and accessory proteins. We estimate that the nitrogenase may account for more than 40% of cell protein during diazotrophic growth and occupy approximately half the active ribosome complement. The concentrations of free amino acids in nitrogen-starved cells were insufficient to support the observed rates of Nif protein expression. Total Nif protein accumulation was reduced 10-fold when the NifK protein was truncated and nitrogenase catalysis lost ( ), implying that reinvestment of fixed nitrogen is essential for further expression and a complete diazotrophy transition. Several amino acids accumulated in non-fixing Δ and mutants, while the rest remained highly stable despite prolonged N starvation. Monitoring post-translational uridylylation of the PII-type signaling proteins GlnB and GlnK revealed distinct nitrogen regulatory roles in M5a1. GlnK uridylylation was persistent throughout the diazotrophy transition while a Δ mutant exhibited significantly reduced Nif expression and nitrogen fixation activity. Altogether, these findings highlight quantitatively the scale of resource allocation required to enable the nitrogen fixation adaptation to take place once underlying signaling processes are fulfilled. Our work also provides an omics-level framework with which to model nitrogen fixation in free-living diazotrophs and inform rational engineering strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8381380PMC
http://dx.doi.org/10.3389/fmicb.2021.718487DOI Listing

Publication Analysis

Top Keywords

nitrogen fixation
20
nif protein
12
nitrogen
10
resource allocation
8
expression nitrogen
8
amino acids
8
diazotrophy transition
8
fixation
5
nif
5
protein
5

Similar Publications

Dual Oxygen-Responsive Control by RegSR of Nitric Oxide Reduction in the Soybean Endosymbiont .

Antioxid Redox Signal

January 2025

Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain.

To investigate the role of the RegSR-NifA regulatory cascade in the oxygen control of nitric oxide (NO) reduction in the soybean endosymbiont . We have performed an integrated study of expression and NO reductase activity in , , , , and mutants in response to microoxia (2% O) or anoxia. An activating role of RegR and NifA was observed under anoxia.

View Article and Find Full Text PDF

Herein, the construction of potential donor-acceptor (D-A) structures was guided using density-functional theory (DFT) calculations. The photocatalytic nitrogen fixation performance of TAPT-CHF was then experimentally determined to be 327.58 μmol g h, which was attributed to its efficient photo-induced charge separation and migration ability.

View Article and Find Full Text PDF

Rhizobia and legumes form a symbiotic relationship resulting in the formation of root structures known as nodules, where bacteria fix nitrogen. Legumes release flavonoids that are detected by the rhizobial nodulation (Nod) protein NodD, initiating the transcriptional activation of nod genes and subsequent synthesis of Nod Factors (NFs). NFs then induce various legume responses essential for this symbiosis.

View Article and Find Full Text PDF

Edaphic factors mediate the response of nitrogen cycling and related enzymatic activities and functional genes to heavy metals: A review.

Ecotoxicol Environ Saf

January 2025

College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China.

Soil nitrogen (N) transformations control N availability and plant production and pose environmental concerns when N is lost, raising issues such as soil acidification, water contamination, and climate change. Former studies suggested that soil N cycling is chiefly regulated by microbial activity; however, emerging evidence indicates that this regulation is disrupted by heavy metal (HM) contamination, which alters microbial communities and enzyme functions critical to N transformations. Environmental factors like soil organic carbon, soil texture, water content, temperature, soil pH, N fertilization, and redox status play significant roles in modulating the response of soil N cycling to HM contamination.

View Article and Find Full Text PDF

Divergent responses of plant multi-element coupling to nitrogen and phosphorus addition in a meadow steppe.

BMC Plant Biol

January 2025

Institute of Grassland Science, School of Life Sciences, Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China.

The intricate biogeochemical cycling of multiple elements plays a pivotal role in upholding a myriad of ecosystem functions. However, our understanding of elemental stoichiometry and coupling in response to global changes remains primarily limited to plant carbon: nitrogen: phosphorus (C: N: P). Here, we assessed the responses of 11 elements in plants from different functional groups to global changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!