This case report demonstrates a small repetition of the case series carried out in Italy wherein inhaled adenosine was administered to patients experiencing severe and worsening coronavirus disease-2019 (COVID-19). The two cases are important not only because they were the first of their type in the United States, but also because both patients were DNR/DNI and were therefore expected to die. Study repetition is vitally important in medicine. New work in pharmacology hypothesizes that adenosine-regulator proteins may play a role in the pathogenesis of COVID-19 infection. Furthermore, adenosine, by interacting with cell receptor sites, has pluripotent effects upon inflammatory cells, is anti-inflammatory, and is important in tissue hypoxia signaling. Inhaled adenosine is potentially safe; thousands have received it for asthmatic challenge testing. The effects of adenosine in these two cases were rapid, positive, and fit the pharmacologic hypotheses (as seen in prior work in this journal) and support its role as a therapeutic nucleoside.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8381598PMC
http://dx.doi.org/10.3389/fphar.2021.676577DOI Listing

Publication Analysis

Top Keywords

inhaled adenosine
12
case report
8
adenosine
5
report inhaled
4
adenosine attenuate
4
attenuate covid-19?
4
covid-19? case
4
report demonstrates
4
demonstrates small
4
small repetition
4

Similar Publications

Article Synopsis
  • Hibernating animals can significantly lower their body temperature without damaging their organs, potentially due to active hypometabolism.
  • Researchers studied the phosphorylation of Akt to see if metabolism decreases during artificial hypothermia in hamsters.
  • They found that while hypothermia through adenosine A1 receptor activation decreased Akt phosphorylation significantly, anesthesia-induced hypothermia showed only partial reduction without organ damage, indicating both methods allow for regulated metabolic reduction.
View Article and Find Full Text PDF

Inhalable nanovesicles loaded with a STING agonist enhance CAR-T cell activity against solid tumors in the lung.

Nat Commun

January 2025

Center for Infection and Immunity, Guangdong Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.

Suppression of chimeric antigen receptor-modified T (CAR-T) cells by the immunosuppressive tumor microenvironment remains a major barrier to their efficacy against solid tumors. To address this, we develop an anti-PD-L1-expressing nanovesicle loaded with the STING agonist cGAMP (aPD-L1 NVs@cGAMP) to remodel the tumor microenvironment and thereby enhance CAR-T cell activity. Following pulmonary delivery, the nanovesicles rapidly accumulate in the lung and selectively deliver STING agonists to PD-L1-overexpressing cells via the PD-1/PD-L1 interaction.

View Article and Find Full Text PDF

Objective: To explore the neuroprotective effect and molecular mechanism of sulforaphane (SFN) on acute carbon monoxide poisoning (ACOP) in rats.

Methods: A total of 135 healthy adult male Sprague-Dawley (SD) rats were randomly divided into normal control group, ACOP model group, and SFN intervention group, with 45 rats in each group. The ACOP animal model was reproduced using carbon monoxide (CO) inhalation in a hyperbaric oxygen chamber, while the normal control group was allowed to breathe fresh air freely.

View Article and Find Full Text PDF

Cerebral glucose and oxygen metabolism and blood perfusion play key roles in neuroenergetics and oxidative phosphorylation to produce adenosine triphosphate (ATP) energy molecules in supporting cellular activity and brain function. Their impairments have been linked to numerous brain disorders. This study aimed to develop an in vivo magnetic resonance spectroscopy (MRS) method capable of simultaneously assessing and quantifying the major cerebral metabolic rates of glucose (CMR) and oxygen (CMRO) consumption, lactate formation (CMR), and tricarboxylic acid (TCA) cycle (V); cerebral blood flow (CBF); and oxygen extraction fraction (OEF) via a single dynamic MRS measurement using an interleaved deuterium (H) and oxygen-17 (O) MRS approach.

View Article and Find Full Text PDF

Does Remdesivir Lower COVID-19 Mortality? A Subgroup Analysis of Hospitalized Adults Receiving Supplemental Oxygen.

Stat Med

December 2024

Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA.

The first Adaptive COVID-19 Treatment Trial (ACTT-1) showed that remdesivir improved COVID-19 recovery time compared with placebo in hospitalized adults. The secondary outcome of mortality was almost significant overall (p = 0.07) and highly significant for people receiving supplemental oxygen at enrollment (p = 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!