Many algorithms in probabilistic sampling-based motion planning have been proposed to create a path for a robot in an environment with obstacles. Due to the randomness of sampling, they can efficiently compute the collision-free paths made of segments lying in the configuration space with probabilistic completeness. However, this property also makes the trajectories have some unnecessary redundant or jerky motions, which need to be optimized. For most robotics applications, the trajectories should be short, smooth and keep away from obstacles. This paper proposes a new trajectory optimization technique which transforms a polygon collision-free path into a smooth path, and can deal with trajectories which contain various task constraints. The technique removes redundant motions by quadratic programming in the parameter space of trajectory, and converts collision avoidance conditions to linear constraints to ensure absolute safety of trajectories. Furthermore, the technique uses a projection operator to realize the optimization of trajectories which are subject to some hard kinematic constraints, like keeping a glass of water upright or coordinating operation with dual robots. The experimental results proved the feasibility and effectiveness of the proposed method, when it is compared with other trajectory optimization methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8381225 | PMC |
http://dx.doi.org/10.3389/fnbot.2021.724116 | DOI Listing |
F1000Res
January 2025
University of Antwerp, Pain in Motion, Antwerp, Antwerp Province, 2000, Belgium.
Introduction: Rotator cuff (RC) tears are the most common and disabling musculoskeletal ailments among patients with shoulder pain. Although most individuals show improvement in function and pain following arthroscopic rotator cuff repair (ARCR), a subgroup of patients continue to suffer from persistent shoulder pain following the surgical procedure. Identifying these factors is important in planning preoperative management to improve patient outcomes.
View Article and Find Full Text PDFClin Transl Radiat Oncol
March 2025
Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
Purpose: To use imaging data from stereotactic MR-guided online adaptive radiotherapy (SMART) of ultracentral lung tumors (ULT) for development of a safe non-adaptive approach towards stereotactic body radiotherapy (SBRT) of ULT.
Patients And Methods: Analysis is based on 19 patients with ULT who received SMART (10 × 5.0-5.
Hum Brain Mapp
January 2025
Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA.
Analysis of resting state fMRI (rs-fMRI) typically excludes images substantially degraded by subject motion. However, data quality, including degree of motion, relates to a broad set of participant characteristics, particularly in pediatric neuroimaging. Consequently, when planning quality control (QC) procedures researchers must balance data quality concerns against the possibility of biasing results by eliminating data.
View Article and Find Full Text PDFSmall Methods
January 2025
Fujian Provincial Key Laboratory of Functional Marine Sensing Materials, College of Material and Chemical Engineering, Minjiang University, Fuzhou, 350108, P. R. China.
The cost-effective and scalable synthesis and patterning of soft nanomaterial composites with improved electrical conductivity and mechanical stretchability remains challenging in wearable devices. This work reports a scalable, low-cost fabrication approach to directly create and pattern crumpled porous graphene/NiS nanocomposites with high mechanical stretchability and electrical conductivity through laser irradiation combined with electrodeposition and a pre-strain strategy. With modulated mechanical stretchability and electrical conductivity, the crumpled graphene/NiS nanocomposite can be readily patterned into target geometries for application in a standalone stretchable sensing platform.
View Article and Find Full Text PDFMed Phys
January 2025
Department of Medical Physics, Nova Scotia Health, Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada.
intra-arc binary collimation (iABC) is a novel treatment technique in which dynamic conformal arcs are periodically interrupted with binary collimation. It has demonstrated its utility through planning studies for the treatment of multiple metastases. However, the binary collimation approach is idealized in the planning system, while the treatment deliveries must adhere to the physical limitations of the mechanical systems involved [e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!