Osteogenic differentiation potential and quantification of fresh and cryopreserved dental follicular stem cells-an analysis.

J Stem Cells Regen Med

Department of Maxillofacial Surgery, College of Dentistry, King Saud University, Riyadh, PO Box11545, KSA.

Published: March 2021

: To isolate and characterize mesenchymal stem cells of dental follicle from fresh and cryopreserved samples and to test any significant difference in their osteogenic differentiation potential by using digital imaging software. We also investigated whether the cryoprotectant used and its concentration is able to maintain cell count and viability. : Mesenchymal stem cells (MSCs) were isolated from dental follicle of impacted third molars. The osteogenic differentiation potential of dental follicle stem cells was assessed using alizarin red and alkaline phosphatase staining followed by digital imaging quantification of the stains. : Dental follicle cells have shown typical characterisation by exhibiting the stem cell stromal markers and hematopoietic markers, but there was variance in the percentage of expression in fresh and cryopreserved samples. There was considerable osteogenic differentiation potential in the fresh sample compared to cryopreserved sample. The cell count and viability were preserved in both samples. : The results in the study have shown wide variation of osteogenic differentiation potential in fresh and cryopreserved samples. Also, the cryoprotectant was found to be effective in its purpose at the specified concentration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8372412PMC
http://dx.doi.org/10.46582/jsrm.1701004DOI Listing

Publication Analysis

Top Keywords

osteogenic differentiation
20
differentiation potential
20
fresh cryopreserved
16
dental follicle
16
stem cells
12
cryopreserved samples
12
mesenchymal stem
8
digital imaging
8
cell count
8
count viability
8

Similar Publications

Bone formation is a complex multi-factor process of bone defect healing. Oxidative stress (OS) is predisposed to induce regulatory cell death (RCD), such as ferroptosis. At present, the antioxidant effects of Crocin on erastin induced oxidative damage were studied.

View Article and Find Full Text PDF

Background: Peri-implantitis is an inflammatory bone disease that seriously affects the health of dental implants. Pyroptosis plays an important role in peri-implantitis and inhibition of pyroptosis may point out a new direction for treating the disease. The long non-coding RNA Negative Regulator of Interferon Response (lncRNA NRIR) is closely related to peri-implantitis and may be involved in the process of pyroptosis.

View Article and Find Full Text PDF

The effect of low energy LED red light on osteogenetic differentiation of periodontal ligament stem cell via the ERK5 signal pathway.

Lasers Med Sci

January 2025

The Department of Preventive Dentistry, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China.

The purpose of this study was to examine how low-energy LED red light influences the early to middle stage of osteogenic differentiation of periodontal ligament stem cells (PDLSCs) via the ERK5 signaling pathway.  METHODS: PDLSCs were extracted from periodontal membrane tissue using enzymatic digestion. At three time points of 7, 10, and 14 days after irradiation with 5J/cm LED red light, the expression levels of early to middle-stage osteogenic-related genes ALP, Col-1, BSP, and OPN were detected by real-time fluorescence quantitative PCR(qRT-PCR) in both control and osteogenesis experimental groups.

View Article and Find Full Text PDF

Background/purpose: Heat stress is essential for improving the efficacy of mesenchymal stem cell (MSC)-based regeneration medicine. However, it is still unclear whether and how heat stress influences the differentiation of stem cells from apical papilla (SCAPs). This research aimed to explore the potential mechanism of glucose-regulated protein 78 (GRP78) in regulating differentiation under heat stress in SCAPs.

View Article and Find Full Text PDF

Background/purpose: Bone reconstruction in the maxillofacial region typically relies on autologous bone grafting, which presents challenges, including donor site complications and graft limitations. Recent advances in tissue engineering have identified highly pure and proliferative dedifferentiated fat cells (DFATs) as promising alternatives. Herein, we explored the capacity for osteoblast differentiation and the osteoinductive characteristics of extracellular vesicles derived from DFATs (DFAT-EVs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!