Melanocortin-4 receptor (MC4R) plays a central role in the regulation of energy homeostasis. Its high sequence similarity to other MC receptor family members, low agonist selectivity and the lack of structural information concerning MC4R-specific activation have hampered the development of MC4R-seletive therapeutics to treat obesity. Here, we report four high-resolution structures of full-length MC4R in complex with the heterotrimeric G protein stimulated by the endogenous peptide ligand α-MSH, FDA-approved drugs afamelanotide (Scenesse™) and bremelanotide (Vyleesi™), and a selective small-molecule ligand THIQ, respectively. Together with pharmacological studies, our results reveal the conserved binding mode of peptidic agonists, the distinctive molecular details of small-molecule agonist recognition underlying receptor subtype selectivity, and a distinct activation mechanism for MC4R, thereby offering new insights into G protein coupling. Our work may facilitate the discovery of selective therapeutic agents targeting MC4R.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8563965PMC
http://dx.doi.org/10.1038/s41422-021-00552-3DOI Listing

Publication Analysis

Top Keywords

melanocortin-4 receptor
8
structural insights
4
insights ligand
4
ligand recognition
4
recognition activation
4
activation melanocortin-4
4
receptor
4
receptor melanocortin-4
4
mc4r
4
receptor mc4r
4

Similar Publications

Motivational dysregulation with melanocortin 4 receptor haploinsufficiency.

NeuroImmune Pharm Ther

September 2024

Cognitive and Neural Science Program, Department of Psychology, Barnwell College, University of South Carolina, Columbia, SC, USA.

Obesity, by any standard, is a global health crisis. Both genetic and dietary contributions to the development and maintenance of obesity were integral factors of our experimental design. As mutations of the melanocortin 4 receptors (MC4R) are the leading monogenetic cause of obesity, MC4R haploinsufficient rats were fed a range of dietary fat (0-12 %) in a longitudinal design.

View Article and Find Full Text PDF

Background: Rare variants in melanocortin 4 receptor gene (MC4R) result in a severe form of early-onset obesity; however, it is unclear how these variants may affect abdominal fat distribution, intrahepatic fat accumulation, and related metabolic sequelae.

Methods: Eight hundred seventy-seven youth (6-21 years) with overweight/obesity, recruited from the Yale Pediatric Obesity Clinic in New Haven, CT, underwent genetic analysis to screen for functionally damaging, rare variants (MAF < 0.01) in MC4R.

View Article and Find Full Text PDF

Cognitive decline and neuroinflammation in a mouse model of obesity: An accelerating role of ageing.

Brain Behav Immun

December 2024

Department of Geriatrics, University Medical Center Goettingen, Robert-Koch-Str. 42, 37075 Goettingen, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany. Electronic address:

Obesity, a pandemic, worldwide afflicts almost one billion people. Obesity and ageing share several pathological pathways leading to neurological disorders. However, due to a lack of suitable animal models, the long-term effects of obesity on age-related disorders- cognitive impairment and dementia have not yet been thoroughly investigated.

View Article and Find Full Text PDF

Obesity and its associated intestinal inflammatory responses represent a significant global challenge. (IF) is a dietary intervention demonstrating various health benefits, including weight loss, enhanced metabolic health, and increased longevity. However, its effect on the intestinal inflammation induced by high-fat diet (HFD) is still not fully comprehended.

View Article and Find Full Text PDF

Melanocortin 4 receptor mutation in obesity.

World J Exp Med

December 2024

Department of Internal Medicine, Gayatri Vidya Parishad Institute of Healthcare and Medical Technology, Visakhapatnam 530048, Andhra Pradesh, India.

Obesity is increasingly prevalent worldwide, with genetic factors contributing to its development. The hypothalamic leptin-melanocortin pathway is central to the regulation of appetite and weight; leptin activates the proopiomelanocortin neurons, leading to the production of melanocortin peptides; these in turn act on melanocortin 4 receptors (MC4R) which suppress appetite and increase energy expenditure. MC4R mutations are responsible for syndromic and non-syndromic obesity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!