AI Article Synopsis

  • Increased numbers of NK cells in TKI-treated chronic myeloid leukemia patients may lead to better prognoses, indicating their potential role in suppressing the disease.
  • This study examines how variations in KIR3DL1 receptor alleles influence NK cell activity against CML cells and their response to the TKI dasatinib.
  • Findings suggest that tailoring treatment strategies based on KIR3DL1 allotypes could enhance NK cell-based immunity against CML, especially with dasatinib's ability to activate these immune cells.

Article Abstract

Tyrosine kinase inhibitor (TKI)-treated chronic myeloid leukemia (CML) patients with increased NK cell number have a better prognosis, and thus, NK cells may suppress CML. However, the efficacy of TKIs varies for reasons yet to be fully elucidated. As NK cell activity is modulated by interactions between their killer cell Ig-like receptors (KIRs) and HLAs of target cells, the combination of their polymorphisms may have functional significance. We previously showed that allelic polymorphisms of and were associated with the prognosis of TKI-treated CML patients. In this study, we focus on differential NK cell activity modulation through KIR3DL1 allotypes. KIR3DL1 expression levels varied according to their alleles. The combination of KIR3DL1 expression level and HLA-Bw4 motifs defined NK cell activity in response to the CML-derived K562 cell line, and Ab-mediated KIR3DL1 blocking reversed this activity. The TKI dasatinib enhanced NK cell activation and cytotoxicity in a KIR3DL1 allotype-dependent manner but did not significantly decrease effector regulatory T cells, suggesting that it directly activated NK cells. Dasatinib also enhanced NK cell cytotoxicity against K562 bearing the BCR-ABL1 T315I TKI resistance-conferring mutation, depending on KIR3DL1/HLA-Bw4 allotypes. Transduction of into the NK cell line NK-92 resulted in KIR3DL1 expression and suppression of NK-92 activity by HLA-B ligation, which was reversed by anti-KIR3DL1 Ab. Finally, KIR3DL1 expression levels also defined activation patterns in CML patient-derived NK cells. Our findings raise the possibility of a novel strategy to enhance antitumor NK cell immunity against CML in a KIR3DL1 allotype-dependent manner.

Download full-text PDF

Source
http://dx.doi.org/10.4049/immunohorizons.2100054DOI Listing

Publication Analysis

Top Keywords

kir3dl1 expression
16
kir3dl1 allotype-dependent
12
cell activity
12
cell
11
kir3dl1
9
cell immunity
8
chronic myeloid
8
myeloid leukemia
8
cml patients
8
expression levels
8

Similar Publications

Phenotypic characterization of NK cells in 5-year-old children exposed to maternal HIV and antiretroviral therapy in early-life.

BMC Immunol

December 2024

Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, UZ-FMHS), Harare, Zimbabwe.

Background: HIV-exposed uninfected (HEU) children are at increased risk of morbidity during the first years of life. Although the immune responses of HEU infants in early-life are relatively well described, studies of natural killer (NK) cells in older HEU children are lacking. NK cell subsets were analysed in HEU children and compared to those in HIV unexposed uninfected (HUU) children aged ~ five years.

View Article and Find Full Text PDF

HLA-B27 and HLA-B57 are associated with autoimmunity and long-term viral control and protection against HIV and HCV infection; however, their role in cancer immunity remains unknown. HLA class I molecules interact with innate checkpoint receptors of the LILRA, LILRB and KIR families present in diverse sets of immune cells. Here, we demonstrate that an open format (peptide free conformation) and expression- and stability-optimized HLA-B57-B2m-IgG4_Fc fusion protein (IOS-1002) binds to human leukocyte immunoglobulin-like receptor B1 and B2 (LILRB1 and LILRB2) and to killer immunoglobulin-like receptor 3DL1 (KIR3DL1).

View Article and Find Full Text PDF

IFNγ mediates the resistance of tumor cells to distinct NK cell subsets.

J Immunother Cancer

July 2024

Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany

Background: Immune checkpoint blockade targeting the adaptive immune system has revolutionized the treatment of cancer. Despite impressive clinical benefits observed, patient subgroups remain non-responsive underscoring the necessity for combinational therapies harnessing additional immune cells. Natural killer (NK) cells are emerging tools for cancer therapy.

View Article and Find Full Text PDF

Background: Primary cutaneous acral CD8+ T-cell lymphoproliferative disorder (TLPD) is a rare and indolent lymphoma entity. Although TLPD was first identified many years ago, the molecular pathogenesis is still not fully understood.

Objectives: In order to better understand the molecular pathogenesis of cutaneous acral CD8+ TLPD and to identify further discriminatory markers to differentiate this lymphoma subtype from other CD8+ cutaneous lymphomas, we analysed five cases of cutaneous acral CD8+ TLPD for putative molecular alterations.

View Article and Find Full Text PDF

Introduction: Polymorphisms in the KIR and HLA genes contribute to the diversity of the NK cell repertoire. Extrinsic factors also play a role in modifying this repertoire. The best example is cytomegalovirus, which promotes the expansion of memory-like NK cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!