This work reports the preparation of nano lignin-rich fraction material via green technology from the holistic use of lignocellulosic biomass bamboo. The bamboo is first chemically treated, followed by acid precipitation to extract bamboo-derived macro lignin-rich fraction material. The nano lignin-rich fraction material was then prepared via ultrasonication technique from the extracted bamboo-derived macro lignin-rich fraction material. The confirmation of the distinct lignin functional groups in the extracted lignin-rich fractions has been done by FTIR. Surface morphology by FESEM and TEM revealed spherical nano-lignin-rich fraction materials from extracted bamboo-derived macro lignin-rich fraction materials. DPPH assays indicated that both the obtained fractions depict beneficial antioxidant characteristics. They were found to be effective in terms of their antibacterial activity against both gram-positive bacteria and gram-negative bacteria , using the disc diffusion method. These fractions have UV blocking property, and nano-lignin-rich fraction material acts as a more potential UV blocking agent than others. Thus, the nano-lignin-rich fraction material has great potential as a high antioxidant, antibacterial, and UV blocking agent useful in biomedical applications. Extraction of macro-lignin rich fraction material using chemical treatment of lignocellulosic biomass bamboo via refluxing followed by acid precipitation.Preparation of nano-lignin rich fraction material from extracted bamboo-derived macro-lignin rich fraction material via ultrasonication technique as a green technology.Structural and surface morphology of the extracted macro-lignin & nano lignin-rich fraction materials have been analyzed by XRD, FTIR, EDX, SEM and TEM.The macro lignin & nano lignin-rich fraction materials showed good antioxidant, antibacterial activity and UV-blocking properties, but the nano-lignin rich fraction material exhibited more efficient properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09593330.2021.1973574 | DOI Listing |
Sci Rep
January 2025
Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia.
Extracellular vesicles (EVs) are nanosized lipid bilayer particles released by various cellular organisms that carry an array of bioactive molecules. EVs have diagnostic potential, as they play a role in intercellular interspecies communication, and could be applied in drug delivery. In contrast to mammalian cell-derived EVs, the study of EVs from bacteria, particularly Gram-positive bacteria, received less research attention.
View Article and Find Full Text PDFClin Transl Oncol
January 2025
Department of Radiation Oncology, HM Hospitales, Madrid, Spain.
Introduction: SRS for the treatment of limited brain metastases (BM) is widely accepted, but there are still limitations in the management of numerous BM. Frameless single-isocenter multitarget SRS is a novel technique that allows for rapid treatment delivery to multiple BM. We report our preliminary clinical, dosimetric, and patient´s shifts outcomes with this technique.
View Article and Find Full Text PDFSci Rep
January 2025
Pacific Northwest National Laboratory, Richland, WA, USA.
Enewetak Atoll underwent 43 historical nuclear tests from 1948 to 1958, including the first hydrogen bomb test, resulting in a substantial nuclear material fallout contaminating the Atoll and the lagoon waters. The radionuclide fallout material deposited in lagoon sediments and soil on the islands will remain for decades to come. With intensifying climate and extreme weather events, the possibility of redistribution of deposited radionuclide material has become a great concern.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Department of Veterinary Pathology, School of Veterinary Medicine, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi-Ghana.
Ethnopharmacological Relevance: Ceiba pentandra (L.) Gaertn. (Malvaceae) has been used in Africa traditionally to manage a variety of illnesses, including cancer.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25(th) Street, corner to J Street. Square of Revolution, Havana 10400. Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, corner to 15 Street, Playa, Havana 11600, Cuba. Electronic address:
Gene expression manipulation is pivotal in therapeutic approaches for various diseases. Non-viral delivery systems present a safer alternative to viral vectors, with reduced immunogenicity and toxicity. However, their effectiveness in promoting endosomal escape, a crucial step in gene transfer, remains limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!