Ionic liquids (ILs), depending on their cation-anion combinations, are known to influence the conformational properties and activities of proteins in a nonuniform manner. To obtain microscopic understanding of such influence, it is important to characterize protein-IL interactions and explore the modified solvation environment around the protein. In this work, molecular dynamics (MD) simulations of the globular protein α-lactalbumin have been carried out in aqueous IL solutions containing 1-butyl-3-methylimidazolium cations (BMIM) in combination with a series of anions with varying degree of hydrophilicity, namely, hexafluorophosphate (PF), ethyl sulfate (ETS), acetate (OAc), chloride (Cl), dicyanamide (DCA), and nitrate (NO) . The calculations revealed that ILs with hydrophobic and hydrophilic anions have contrasting influence on conformational flexibility of the protein. It is further observed that the BMIM cations exhibit site-specific orientations at the interface depending on the hydrophilicity of the anion component. Most importantly, the results demonstrated enhanced propensity of hydrophilic ILs to replace relatively weaker protein-water hydrogen bonds by stronger protein-IL hydrogen bonds at the protein surface as compared to the hydrophobic ILs. Such breaking of protein-water hydrogen bonds at a greater extent leads to greater loss of water hydrating the protein in the presence of hydrophilic ILs, thereby reducing the protein's stability.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.1c04167DOI Listing

Publication Analysis

Top Keywords

hydrogen bonds
12
ionic liquids
8
varying degree
8
degree hydrophilicity
8
globular protein
8
influence conformational
8
hydrophilic ils
8
protein-water hydrogen
8
protein
6
ils
5

Similar Publications

Hydrogen Bonding Polarization Strengthening the Peptide-Based Hydrogels.

J Phys Chem B

December 2024

Research Institute of Interdisciplinary Science & School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China.

Peptide-based hydrogels form a kind of promising material broadly used in biomedicine and biotechnology. However, the correlation between their hydrogen bonding dynamics and mechanical properties remains uncertain. In this study, we found that the adoption of β-sheet and α-helix secondary structures by ECF-5 and GFF-5 peptides, respectively, could further form fiber networks to immobilize water molecules into hydrogels.

View Article and Find Full Text PDF

The nonheme iron(II) complexes containing a fluoride anion, Fe(BNPAO)(F) () and [Fe(BNPAOH)(F)(THF)](BF) (), were synthesized and structurally characterized. Addition of dioxygen to either or led to the formation of a fluoride-bridged, dinuclear iron(III) complex [Fe(BNPAO)(F)(μ-F)] (), which was characterized by single-crystal X-ray diffraction, H NMR, and elemental analysis. An iron(II)(iodide) complex, Fe(BNPAO)(I) (), was prepared and reacted with O to give the mononuclear complex -Fe(BNPAO)(OH)(I) ().

View Article and Find Full Text PDF

A self-healing superhydrophobic coating was successfully prepared in the present work. The coating comprised PEG (polyethylene glycol) and FeO nanoparticles modified with stearic acid (SA) via hydrogen bonds, using polyamide resin and epoxy as binders. The chemically damaged surface could restore its original superhydrophobic structure and chemical composition after 4 h at room temperature or 10 min of heating in an oven with a self-healing efficiency of 95.

View Article and Find Full Text PDF

Bacterial-infected skin wounds caused by trauma remain a significant challenge in modern medicine. Clinically, there is a growing demand for wound dressings with exceptional antibacterial activity and robust regenerative properties. To address the need, this study proposes a novel multifunctional dressing designed to combine efficient gas exchange, effective microbial barriers, and precise drug delivery capabilities, thereby promoting cell proliferation and accelerating wound healing.

View Article and Find Full Text PDF

Enhanced Ammonia Capture for Adsorption Heat Pumps Using a Salt-Embedded COF Aerogel Composite.

Gels

November 2024

School of Mechanical and Aerospace Engineering, Gyeongsang National University, Jinju 52828, Republic of Korea.

Adsorption heat pumps (AHPs) have garnered significant attention due to their efficient use of low-grade thermal energy, eco-friendly nature, and cost-effectiveness. However, a significant challenge lies in developing adsorbent materials that can achieve a high uptake capacity, rapid adsorption rates, and efficient reversible release of refrigerants, such as ammonia (NH). Herein, we developed and synthesized a novel salt-embedded covalent organic framework (COF) composite material designed for enhanced NH capture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!