A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Vacancy Engineering to Regulate Photocatalytic Activity of Polymer Photosensitizers for Amplifying Photodynamic Therapy against Hypoxic Tumors. | LitMetric

Vacancy Engineering to Regulate Photocatalytic Activity of Polymer Photosensitizers for Amplifying Photodynamic Therapy against Hypoxic Tumors.

ACS Appl Mater Interfaces

Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China.

Published: August 2021

Polymer photosensitizers (PPSs) with the distinctive properties of good light-harvesting capability, high photostability, and excellent tumor retention effects have aroused great research interest in photodynamic therapy (PDT). However, their potential translation into clinic was often constrained by the hypoxic nature of tumor microenvironment, the aggregation-caused reduced production of reactive oxygen species (ROS), and the tedious procedure of manufacture. As a powerful and versatile strategy, vacancy engineering possesses the unique capability to effectively improve the photogenerated electron efficiency of nanomaterials for high-performance O and ROS production. Herein, by introducing vacancy engineering into the design of PPSs for PDT for the first time, we synthesized a novel PPS of Au-decorated polythionine (PTh) nanoconstructs (PTh@Au NCs) with the unique integrated features of distinguished O self-evolving function and highly efficient ROS generation for achieving the greatly enhanced PDT efficacy toward hypoxic tumor both and . The incorporation of Au into PTh leads to the special PTh-Au heterostructure-induced sulfur vacancies in PTh@Au NCs, which results in an efficient electron-hole separation performance and also plays a key role in a long lifetime of free electrons and holes. Accordingly, an ∼2- to 3-fold ROS generation and an ∼1.5-fold increase of O self-supply than the pure PTh nanoparticles (NPs) were obtained even under hypoxic conditions upon exposure to 650 nm light. By combining such superior ROS generation and O self-supply performances with the outstanding cellular internalization and tumor accumulation capacities, an advanced antitumor effect with the achievement of almost complete hypoxic tumor elimination or 88% cell destruction was acquired by the PTh@Au NCs. In addition, the distinctive facile one-step redox strategy for PTh@Au NCs synthesis compared to the reported PPSs for PDT also makes it beneficial for potential practical application. The first introduction of vacancy engineering concept into PPSs in the field of PDT proposed in this work offers a new strategy for the development and design highly efficient PPSs for PDT applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c09466DOI Listing

Publication Analysis

Top Keywords

vacancy engineering
16
pth@au ncs
16
ppss pdt
12
ros generation
12
polymer photosensitizers
8
photodynamic therapy
8
highly efficient
8
hypoxic tumor
8
pdt
6
hypoxic
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!