A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Versatile Functionalization of P25 Conjugated ND Nanocomposites for UV-Mediated Free Radical Scavenging and Facilitates Anti-Inflammation Potential in Human Cells. | LitMetric

In this work, we demonstrated that building different linking groups between nanodiamond (ND) and TiO (P25) could provide more effective protection under oxidative stress and ultraviolet (UV) light irradiation compared with the use of TiO alone. The establishment of ester (-C-O-O-R), amide (-CONH-), and epoxide-amine adduct (-NHCCO-) groups between ND-TiO composites was found to be critical in the generation of reactive oxygen species (ROS) by controlling their charge transfer behaviors. We hypothesized that linking groups between the composites dictate the performance of ROS generation from nano-TiO under UV-light irradiation due to the differences in linking groups. The results showed that hydroxyl radicals were attenuated by the incorporation of ND. An MTT cell proliferation assay was performed in human cells under the treatment of ND-TiO composites to investigate the impacts of composites on cell viability. The results from the luciferase reporter assay suggested they have anti-inflammatory activity and can reduce cellular DNA damage under ROS stimulation. A zebrafish model was also applied with the ND-TiO composite treatment to demonstrate the safety aspects of the composites in vivo and their biomedical application potential. Studies exploring ROS generation behaviors in different linking groups suggested that interactive functionalization between nanoparticles might be an ideal antioxidant and anti-inflammatory strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c10632DOI Listing

Publication Analysis

Top Keywords

linking groups
16
human cells
8
nd-tio composites
8
ros generation
8
groups
5
composites
5
versatile functionalization
4
functionalization p25
4
p25 conjugated
4
conjugated nanocomposites
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!