Cell wall thickness and composition are related to photosynthesis in Antarctic mosses.

Physiol Plant

Departament de Biologia, Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), INAGEA, Palma, Illes Balears, Spain.

Published: December 2021

Cell wall thickness (T ) has been proposed as an important anatomical trait that could determine photosynthesis through land plants' phylogeny, bryophytes being the plant group presenting the thickest walls and the lowest photosynthetic rates. Also, it has recently been suggested that cell wall composition may have the potential to influence both thickness and mesophyll conductance (g ), representing a novel trait that could ultimately affect photosynthesis. However, only a few studies in spermatophytes have demonstrated this issue. In order to explore the role of cell wall composition in determining both T and g in mosses, we tested six species grown under field conditions in Antarctica. We performed gas exchange and chlorophyll fluorescence measurements, an anatomical characterization, and a quantitative analysis of cell wall main composition (i.e., cellulose, hemicelluloses and pectins) in these six species. We found the photosynthetic rates to vary between the species, and they also presented differences in anatomical characteristics and in cell wall composition. Whilst g correlated negatively with T and pectins content, a positive relationship between T and pectins emerged, suggesting that pectins could contribute to determine cell wall porosity. Although our results do not allow us to provide conclusive statements, we suggest for the first time that cell wall composition-with pectins playing a key role-could strongly influence T and g in Antarctic mosses, ultimately defining photosynthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ppl.13533DOI Listing

Publication Analysis

Top Keywords

cell wall
32
wall composition
12
cell
8
wall thickness
8
antarctic mosses
8
photosynthetic rates
8
wall
7
composition
5
pectins
5
thickness composition
4

Similar Publications

Development of an optimized protocol for protoplast-to-plant regeneration of selected varieties of Brassica oleracea L.

BMC Plant Biol

December 2024

Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculturein Krakow, Mickiewicza 21, Krakow, 31-120, Poland.

Background: Brassica oleracea L. is a key plant in the Brassicaceae family, known for popular vegetables like cabbage, broccoli, kale and collard. Collard (B.

View Article and Find Full Text PDF

Analysis of MRI imaging characteristics in 10 cases of adult granulosa cell tumor with normal estrogen levels.

BMC Med Imaging

December 2024

Department of Radiology, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, Zhejiang, 325000, China.

Objective: This study investigates the MRI characteristics of primary and metastatic adult granulosa cell tumor with normal estrogen levels (AGCT-NEL) to enhance clinical understanding and diagnostic accuracy of this disease.

Methods: We collected clinical data from 10 patients with AGCT-NEL, confirmed by pathology, treated at our hospital from January 2016 to January 2024. We retrospectively analyzed the MRI features of primary and metastatic lesions from aspects such as shape, edge characteristics, MRI signal, and enhancement features.

View Article and Find Full Text PDF

Unfolding and refolding of GH19 chitinase Chi19MK with antifungal activity from Lysobacter sp. MK9-1 at low pH and high temperature.

J Biosci Bioeng

December 2024

Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata 992-8510, Japan. Electronic address:

The GH19 chitinase Chi19MK from Lysobacter sp. MK9-1 inhibits fungal growth. In this study, the thermal stability of Chi19MK was investigated in buffers of different pH.

View Article and Find Full Text PDF

The ability to quench reactive oxygen species (ROS) overproduced in plant chloroplasts under light stress conditions is essential for securing plant photosynthetic performance and agricultural yield. Although genetic engineering can enhance plant stress resistance, its widespread application faces limitations due to challenges in successful transformation across plant species and public acceptance concerns. This study proposes a nontransgenic chemical approach using a designed chimeric peptide that scavenges ROS within plant chloroplasts for managing light stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!