AI Article Synopsis

  • The Polish primitive horse breed officially allows only blue dun coat colors, but there is diversity in coat shades within the population.
  • Genetic analysis of specific genes related to coat color, particularly the TBX3 gene, showed significant associations with coat color variations and the degree of dun dilution.
  • A notable 35% of the genetically bay dun-colored horses were misclassified as blue duns, suggesting the influence of another gene that affects pigmentation and complicates visual identification.

Article Abstract

Only the blue dun coat color, produced by the action of the dun allele on the background of a black base coat, is officially permitted in the Polish primitive horse (PPH, Konik) breed, yet the population is not visually homogenous and various coat color shades occur. Herein, the molecular background of PPH coat color was studied based on genotyping of known causative variants in equine coat color-related genes (ASIP, MC1R, TBX3, SLC36A1, SLC45A2, PMEL17, and RALY). Additionally, screening for the new polymorphisms was conducted for the ASIP gene coding sequence and the TBX3 1.6-kb insert (associated with the dun dilution). We did not observe the champagne, silver, or cream color dilution variants in the PPH breed. A significant association (P < 0.01) was recorded for the genotype in TBX3 gene 1.6 kb in/del and the degree of dun coat dilution, demonstrating that the dominant action of the dun mutation is not fully penetrant. In addition to the effect of the 1.6 kb in/del zygosity, variants within the TBX3 insert were significantly associated with PPH coat color variability (P < 0.01), suggesting the presence of an additional allele at this locus. Finally, we identified a high frequency (35%) of genetically bay dun-colored PPH individuals that are officially recorded as blue (black base coat) duns. We propose that the difficulty in distinguishing these 2 phenotypes visually is due to an independent locus upstream of the ASIP gene, which was recently described as darkening the typical bay pigmentation shade.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jhered/esab034DOI Listing

Publication Analysis

Top Keywords

coat color
20
coat
9
polish primitive
8
primitive horse
8
dun dilution
8
dun coat
8
action dun
8
black base
8
base coat
8
pph coat
8

Similar Publications

The present investigation deals with comparisons drawn among three types of different mustard seed coat colors, namely, Black (), Brown (), and White (), with respect to protein's bio-availability through pepsin digestibility, with and without the involvement of major anti-nutritional factors (glucosinolate type AITC, Allylisothiothiocyanate) and relative food functions. These are validated by means of crude protein determination, precipitated protein isolate preparation for evaluating the fat absorption capacity (FAC), emulsifying activity (EA), emulsion stability (ES), whippability, foam stability (FS), the nitrogen solubility index (NSI), and the protein dispersibility index (PDI). The results indicate that the partial removal of glucosinolates from brown mustard (0.

View Article and Find Full Text PDF

Expression and Analysis of Gene in the Skin from Three Locations on Dun Mongolian Bider Horse.

Genes (Basel)

December 2024

Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China.

Background/objectives: The Mongolian horse, one of the oldest and most genetically diverse breeds, exhibits a wide variety of coat colors and patterns, including both wild-type and unique features. A notable characteristic of dun Mongolian horses is the presence of Bider markings-symmetrical, black-mottled patterns observed on the shoulder blades. These markings are also seen in Przewalski's horses.

View Article and Find Full Text PDF

A rare dominant allele determines seed coat color and improves seed oil content in .

Sci Adv

January 2025

College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China.

Article Synopsis
  • Yellow seed coat color (SCC) is linked to higher seed oil content (SOC) and lower seed lignocellulose content (SLC), but no dominant yellow SCC genes were previously known.
  • A dominant yellow SCC gene called N53-2 was identified in a study using a double haploid population from N53-2 and a black seed coat material, revealing thousands of expression quantitative trait loci (eQTLs) and specific trans-eQTL hotspots.
  • Transgenic experiments confirmed that the newly discovered allele produces yellow SCC seeds with significantly higher SOC and lower SLC, offering promising prospects for breeding rapeseed with desirable traits.
View Article and Find Full Text PDF

Arabella Gray delves into two new pieces of research which have simultaneously revealed the genetics behind the orange coat colour of cats.

View Article and Find Full Text PDF

Worldwide, congenital deafness and pigmentation disorders impact millions with their diverse manifestations, and among these genetic conditions, mutations in the Microphthalmia-associated transcription factor (MITF: OMIM#156845) gene are notable for their profound effects on melanocyte development and auditory functions. This study reports a novel porcupine model exhibiting spontaneous deafness and pigmentation abnormalities reminiscent of human Waardenburg Syndrome Type 2 (WS2: OMIM#193510). Through phenotypic characterization, including coat color, skin, eye morphology, and auditory brainstem response (ABR) assessments, we identified hypopigmentation and complete deafness in mutant porcupines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!