Although docosahexaenoic acid (DHA), an important dietary omega-3 polyunsaturated fatty acid (PUFA), is at present primarily sourced from marine fish, bioengineered crops producing DHA may offer a more sustainable and cost-effective source. DHA has been produced in transgenic oilseed crops, however, DHA in seed oil primarily occupies the sn-1/3 positions of triacylglycerol (TAG) with relatively low amounts of DHA in the sn-2 position. To increase the amount of DHA in the sn-2 position of TAG and in seed oil, putative lysophosphatidic acid acyltransferases (LPAATs) were identified and characterized from the DHA-producing alga Schizochytrium sp. and from soybean (Glycine max). The affinity-purified proteins were confirmed to have LPAAT activity. Expression of the Schizochytrium or soybean LPAATs in DHA-producing Arabidopsis expressing the Schizochytrium PUFA synthase system significantly increased the total amount of DHA in seed oil. A novel sensitive band-selective heteronuclear single quantum coherence (HSQC) NMR method was developed to quantify DHA at the sn-2 position of glycerolipids. More than two-fold increases in sn-2 DHA were observed for Arabidopsis lines expressing Schizochytrium or soybean LPAATs, with one Schizochytrium LPAAT driving DHA accumulation in the sn-2 position to 61% of the total DHA. Furthermore, expression of a soybean LPAAT led to a redistribution of DHA-containing TAG species, with two new TAG species identified. Our results demonstrate that transgenic expression of Schizochytrium or soybean LPAATs can increase the proportion of DHA at the sn-2 position of TAG and the total amount of DHA in the seed oil of a DHA-accumulating oilseed plant. Additionally, the band-selective HSQC NMR method that we developed provides a sensitive and robust method for determining the regiochemistry of DHA in glycerolipids. These findings will benefit the advancement of sustainable sources of DHA via transgenic crops such as canola and soybean.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8386867 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0256625 | PLOS |
Molecules
December 2024
Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, Grunwaldzki Square 24, 50-363 Wrocław, Poland.
The aim of this research was to design and synthesize new lipid conjugates of 7-DHC that could serve as a new storage form of esterified provitamin D, increasing the reservoir of this biomolecule in the epidermis and enabling controlled production of vitamin D even during periods of sunlight deficiency. Acylglycerol and glycerophospholipid containing succinate-linked provitamin D at the -2 position of the glycerol backbone were synthesized from dihydroxyacetone (DHA) and -glycerophosphocholine (GPC), respectively. The three-step synthesis of 1,3-dipalmitoyl-2-(7-dehydrocholesterylsuccinoyl)glycerol involved the esterification of DHA with palmitic acid, reduction of the carbonyl group, and conjugation of the resulting 1,3-dipalmitoylglycerol with 7-dehydrocholesterol hemisuccinate (7-DHC HS).
View Article and Find Full Text PDFMolecules
December 2024
Science Institute, Chemistry Department, University of Iceland, Dunhaga 3, 107 Reykjavik, Iceland.
This report describes the asymmetric synthesis of a focused library of enantiopure structured triacylglycerols (TAGs) comprised of a single saturated fatty acid (C6, C8, C10, C12, C14 or C16), a pure bioactive n-3 polyunsaturated fatty acid (EPA or DHA) and a potent drug (ibuprofen or naproxen) intended as a novel type of prodrug. One of the terminal -1 or -3 positions of the glycerol backbone is occupied with a saturated fatty, the remaining one with a PUFA, and the drug entity is present in the -2 position. This was accomplished by a six-step chemoenzymatic approach starting from enantiopure ()- and ()-solketals.
View Article and Find Full Text PDFFEBS Lett
December 2024
Membrane Biochemistry & Biophysics, Department of Chemistry, Utrecht University, The Netherlands.
Yeast is a poikilothermic organism and adapts its lipid composition to the environmental temperature to maintain membrane physical properties. Studies addressing temperature-dependent adaptation of the lipidome have described changes in the phospholipid composition at the level of sum composition (e.g.
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Jiangsu 214126, China.
Glycerol core aldehydes (GCAs) are significant nonvolatile aldehyde compounds generated in heated edible oils, which may pose potential health risks. Utilizing the complementary CID and EAD mass spectrometry data, this study introduced a predict-to-hit strategy, identifying 42 types of GCAs from oxidized OOO, LLL, and LnLnLn. Structural analysis revealed that oxidation occurred at both the sn-2 and sn-1/3 positions of triglyceride (TG), with the Sn-1/3 position exhibiting greater susceptibility as the degree of TG unsaturation increased.
View Article and Find Full Text PDFPoult Sci
November 2024
JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China. Electronic address:
An experiment was conducted to evalute the effects of adding palm olein (POL), modified palm olein (high degree of acyl migration palm olein, H-AMD), and lard (total fatty acid saturation degree is similar to palm olein) to the diet of broilers. The study assessed production performance, fatty acid absorption, and abdominal fat deposition. A total of 100 one-week-old female broiler chicks were randomly assigned to three-tiered pens and fed five experimental diets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!