Non-coding RNAs (ncRNAs) are a type of RNAs which are not used to encode protein sequences. Emerging evidence shows that lots of ncRNAs may participate in many biological processes and must be widely involved in many types of cancers. Therefore, understanding their functionality is of great importance. Similar to proteins, various functions of ncRNAs relies on their subcellular localizations. Traditional high-throughput methods in wet-lab to identify subcellular localization is time-consuming and costly. In this paper, we propose a novel computational method based on multi-kernel learning to identify multi-label ncRNA subcellular localizations, via graph regularized k-local hyperplane distance nearest neighbor algorithm. First, we construct six types of sequence-based feature descriptors and select important feature vectors. Then, we build a multi-kernel learning model with Hilbert-Schmidt independence criterion (HSIC) to obtain optimal weights for vairous features. Furthermore, we propose the graph regularized k-local hyperplane distance nearest neighbor algorithm (GHKNN) as a binary classification model for detecting one kind of non-coding RNA subcellular localization. Finally, we apply One-vs-Rest strategy to decompose multi-label problem of non-coding RNA subcellular localizations. Our method achieves excellent performance on three ncRNA datasets and three human ncRNA datasets, and out-performs other outstanding machine learning methods. Comparing to existing method, our model also performs well especially on small datasets. We expect that this model will be useful for the prediction of subcellular localization and the study of important functional mechanisms of ncRNAs. Furthermore, we establish user-friendly web server (http://ncrna.lbci.net/) with the implementation of our method, which can be easily used by most experimental scientists.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCBB.2021.3107621 | DOI Listing |
Int J Biol Macromol
January 2025
School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China. Electronic address:
Glycosaminoglycans (GAGs), as natural products with diverse biological activities, play a significant role in regulating inflammatory homeostasis. Nevertheless, the mechanism underlying their intracellular anti-inflammatory properties remains unclear. Herein, we propose a single-organelle visualization tracking framework, leveraging an advanced fluorescent imaging technology combined with labeling methods to dynamically trace the subcellular regulatory mechanisms of GAGs in eliminating inflammatory markers, such as reactive oxygen species (ROS).
View Article and Find Full Text PDFJ Biol Chem
January 2025
Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; Molecular, Cellular & Integrated Neurosciences, Colorado State University, Fort Collins, CO 80523, USA; Cell & Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA. Electronic address:
The Shab family voltage-gated K channels (i.e., Kv2.
View Article and Find Full Text PDFMol Cell Proteomics
January 2025
Department of Biology, Duke University, Durham, NC, 27708, USA. Electronic address:
Under stress conditions, cells reprogram their molecular machineries to mitigate damage and promote survival. Ubiquitin signaling is globally increased during oxidative stress, controlling protein fate and supporting stress defenses at several subcellular compartments. However, the rules driving subcellular ubiquitin localization to promote concerted response mechanisms remain understudied.
View Article and Find Full Text PDFInt J Phytoremediation
January 2025
Graduate School of Environmental Studies, Tohoku University, Sendai, Japan.
ssp. is well known as a Cd hyperaccumulator. Yet, understanding how this plant survives in a high Cd environment without appearing toxicity signs is far from complete.
View Article and Find Full Text PDFNat Commun
January 2025
Neuroscience Institute, New York University Langone Health, New York, NY, 10016, USA.
Apical and basal dendrites of pyramidal neurons receive anatomically and functionally distinct inputs, implying compartment-level functional diversity during behavior. To test this, we imaged in vivo calcium signals from soma, apical dendrites, and basal dendrites in mouse hippocampal CA3 pyramidal neurons during head-fixed navigation. To capture compartment-specific population dynamics, we developed computational tools to automatically segment dendrites and extract accurate fluorescence traces from densely labeled neurons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!