Excess electrons in liquid acetonitrile are of particular interest because they exist in two different forms in equilibrium: they can be present as traditional solvated electrons in a cavity, and they can form some type of solvated molecular anion. Studies of small acetonitrile cluster anions in the gas phase show two isomers with distinct vertical detachment energies, and it is tempting to presume that the two gas-phase cluster anion isomers are precursors of the two excess electron species present in bulk solution. In this paper, we perform DFT-based molecular dynamics simulations of acetonitrile cluster anions to understand the electronic species that are present and why they have different binding energies. Using a long-range-corrected density functional that was optimally tuned to describe acetonitrile cluster anion structures, we have theoretically explored the chemistry of (CHCN) cluster anions with sizes = 5, 7, and 10. Because the temperature of the experimental cluster anions is not known, we performed two sets of simulations that investigated how the way in which the cluster anions are prepared affects the excess electron binding motif: one set of simulations simply attached excess electrons to neutral (CHCN) clusters, providing little opportunity for the clusters to relax in the presence of the excess electron, while the other set allowed the cluster anions to thermally equilibrate near room temperature. We find that both sets of simulations show three distinct electron binding motifs: electrons can attach to the surface of the cluster (dipole-bound) or be present either as solvated monomer anions, CHCN, or as solvated molecular dimer anions, (CHCN). All three species have higher binding energies at larger cluster sizes. Thermal equilibration strongly favors the formation of the valence-bound molecular anions relative to surface-bound excess electrons, and the dimer anion becomes more stable than the monomer anion and surface-bound species as the cluster size increases. The calculated photoelectron spectra from our simulations in which there was poor thermal equilibration are in good agreement with experiment, suggesting assignment of the two experimental cluster anion isomers as the surface-bound electron and the solvated molecular dimer anion. The simulations also suggest that the shoulder seen experimentally on the low-energy isomer's detachment peak is not part of a vibronic progression but instead results from molecular monomer anions. Nowhere in the size range that we explore do we see evidence for a nonvalence, cavity-bound interior-solvated electron, indicating that this species is likely only accessible at larger sizes with good thermal equilibration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.1c05855 | DOI Listing |
J Phys Chem A
January 2025
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
With the advancement of extreme ultraviolet (EUV) lithography technology, the demand for high-performance EUV photoresists has surged. Traditional photoresists struggle to meet the stringent requirements for increasingly smaller feature sizes in semiconductor manufacturing. Among emerging candidates, tin-based materials, particularly Sn-oxo photoresists, have shown promise due to their superior EUV light absorption properties.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China; Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China. Electronic address:
The concentration of S is a vital environmental indicator for evaluating the quality of source water, surface water, and wastewater, and it has a significant impact on biological systems, particularly human health. Therefore, it is crucial to detect S selectively and sensitively. In this study, we developed a simple and rapid one-pot method to prepare a gold nanocluster (BSA-AuNCs) probe for fluorescence-enhanced detection of S toxemia and analyzed the morphological characteristics of BSA-AuNCs and its complex with S using various characterization techniques.
View Article and Find Full Text PDFChemphyschem
January 2025
Shanxi University, Institute of Molecular Science, CHINA.
Delocalized multicenter bonds play a crucial role in clusters with a planar hypercoordinate center(s), making it difficult for highly electronegative elements, especially halogen atoms, to achieve the planar hypercoordinate arrangement. Herein, we introduce a star-like cluster Br6Li5-, whose global minimum contains a planar pentacoordinate bromine (ppBr). In this cluster, the central ppBr atom coordinates with five alkali metal Li atoms, which in turn bridge an equal number of electronegative Br atoms in the periphery, leading to the formation of the binary cluster Br6Li5-.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
St. Catherine Specialty Hospital, 10000 Zagreb, Croatia.
Pharmacogenetics is a branch of genomic medicine aiming to personalize drug prescription guidelines based on individual genetic information. This concept might lead to a reduction in adverse drug reactions, which place a heavy burden on individual patients' health and the economy of the healthcare system. The aim of this study was to present insights gained from the pharmacogenetics-based clustering of over 500 patients from the Croatian population.
View Article and Find Full Text PDFBiomolecules
January 2025
Xingzhi College, Zhejiang Normal University, Jinhua 321100, China.
Nitrite reductases play a crucial role in the nitrogen cycle, demonstrating significant potential for applications in the food industry and environmental remediation, particularly for nitrite degradation and detection. In this study, we identified a novel nitrite reductase (NiR) from a newly isolated denitrifying bacterium, YD01. We constructed a heterologous expression system using BL21/pET28a-Nir, which exhibited remarkable nitrite reductase enzyme activity of 29 U/mL in the culture broth, substantially higher than that reported for other strains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!