Targeted protein degradation is garnering increased attention as a therapeutic modality due in part to its promise of modulating targets previously considered undruggable. Cereblon E3 Ligase Modulating Drugs (CELMoDs) are one of the most well-characterized therapeutics employing this modality. CELMoDs hijack Cereblon E3 ligase activity causing neosubstrates to be ubiquitinated and degraded in the proteasome. Here, we describe a suite of assays-cellular substrate degradation, confirmation of CELMoD mechanism of action, in vitro ubiquitination, and Cereblon binding-that can be used to characterize CELMoD-mediated degradation of Cereblon neosubstrates. While the assays presented herein can be run independently, when combined they provide a strong platform to support the discovery and optimization of CELMoDs and fuel validation of targets degraded by this drug modality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-1665-9_15 | DOI Listing |
Biochem Biophys Res Commun
February 2023
Max Planck Institute for Biology, Tübingen, Germany; Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany. Electronic address:
In targeted protein degradation, immunomodulatory drugs (IMiDs) or cereblon (CRBN) E3 ligase modulatory drugs (CELMoDs) recruit neo-substrate proteins to the E3 ubiquitin ligase receptor CRBN for ubiquitination and subsequent proteasomal degradation. While the structural basis of this mechanism is generally understood, we have only recently described the recognition mode of the natural CRBN degron. In this communication, we reveal that the IMiD- or CELMoD-mediated binding of neo-substrates closely mimics the recognition of natural degrons.
View Article and Find Full Text PDFMethods Mol Biol
January 2022
Bristol Myers Squibb Company, San Diego, CA, USA.
Targeted protein degradation is garnering increased attention as a therapeutic modality due in part to its promise of modulating targets previously considered undruggable. Cereblon E3 Ligase Modulating Drugs (CELMoDs) are one of the most well-characterized therapeutics employing this modality. CELMoDs hijack Cereblon E3 ligase activity causing neosubstrates to be ubiquitinated and degraded in the proteasome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!