A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Toward subject-specific evaluation: methods of evaluating finite element brain models using experimental high-rate rotational brain motion. | LitMetric

Toward subject-specific evaluation: methods of evaluating finite element brain models using experimental high-rate rotational brain motion.

Biomech Model Mechanobiol

Center for Applied Biomechanics, University of Virginia, 4040 Lewis and Clark Dr., Charlottesville, VA, 22911, USA.

Published: December 2021

Computational models of the brain have become the gold standard in biomechanics to understand, predict, and mitigate traumatic brain injuries. Many models have been created and evaluated with limited experimental data and without accounting for subject-specific morphometry of the specimens in the dataset. Recent advancements in the measurement of brain motion using sonomicrometry allow for a comprehensive evaluation of brain model biofidelity using a high-rate, rotational brain motion dataset. In this study, four methods were used to determine the best technique to compare nodal displacement to experimental brain motion, including a new morphing method to match subject-specific inner skull geometry. Three finite element brain models were evaluated in this study: the isotropic GHBMC and SIMon models, as well as an anisotropic model with explicitly embedded axons (UVA-EAM). Using a weighted cross-correlation score (between 0 and 1), the anisotropic model yielded the highest average scores across specimens and loading conditions ranging from 0.53 to 0.63, followed by the isotropic GHBMC with average scores ranging from 0.46 to 0.58, and then the SIMon model with average scores ranging from 0.36 to 0.51. The choice of comparison method did not significantly affect the cross-correlation score, and differences of global strain up to 0.1 were found for the morphed geometry relative to baseline models. The morphed or scaled geometry is recommended when evaluating computational brain models to capture the subject-specific skull geometry of the experimental specimens.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10237-021-01508-7DOI Listing

Publication Analysis

Top Keywords

brain motion
16
brain models
12
average scores
12
brain
10
finite element
8
element brain
8
high-rate rotational
8
rotational brain
8
skull geometry
8
isotropic ghbmc
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!