Purpose: Proprioceptive feedback is crucial for motor control and stabilization of the shoulder joint in everyday life and sports. Shoulder dislocation causes anatomical and proprioceptive feedback damage that contributes to subsequent dislocations. Previous recurrent anterior shoulder instability (RSI) studies did not investigate functional neuroplasticity related to proprioception of the injured shoulder. Thus, we aimed to study the differences in neuroplasticity related to motor control between patients with RSI and healthy individuals, using functional magnetic resonance imaging, and assess the effects of peripheral proprioceptive deficits due to RSI on CNS activity.
Methods: Using passive shoulder motion and voluntary shoulder muscles contraction tasks, we compared the CNS correlates of proprioceptive activity between patients having RSI (n = 13) and healthy controls (n = 12) to clarify RSI pathophysiology and the effects of RSI-related peripheral proprioceptive deficits on CNS activity.
Results: Decreased proprioception-related brain activity indicated a deficient passive proprioception in patients with RSI (P < 0.05 family-wise error, cluster level). Proprioceptive afferent-related right cerebellar activity significantly negatively correlated with the extent of shoulder damage (P = 0.001, r = -0.79). Functional magnetic resonance imaging demonstrated abnormal motor control in the CNS during voluntary shoulder muscles contraction.
Conclusion: Our integrated analysis of peripheral anatomical information and brain activity during motion tasks can be used to investigate other orthopedic diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8677609 | PMC |
http://dx.doi.org/10.1249/MSS.0000000000002775 | DOI Listing |
Sci Rep
December 2024
Department of Orthopaedics and Traumatology, The University of Hong Kong, Pok Fu Lam, Hong Kong.
Establishing normative values and understanding how proprioception varies among body parts is crucial. However, the variability across individuals, especially adolescents, makes it difficult to establish norms. This prevents further investigation into classifying patients with abnormal proprioception.
View Article and Find Full Text PDFFront Neurosci
November 2024
Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia.
Unlabelled: Limb amputation results in such devastating consequences as loss of motor and sensory functions and phantom limb pain (PLP). Neurostimulation-based approaches have been developed to treat this condition, which provide artificial somatosensory feedback such as peripheral nerve stimulation (PNS), spinal cord stimulation (SCS), and transcutaneous electrical nerve stimulation (TENS). Yet, the effectiveness of different neurostimulation methods has been rarely tested in the same participants.
View Article and Find Full Text PDFNihon Eiseigaku Zasshi
December 2024
Department of Human and Artificial Intelligent Systems, Graduate School of Engineering, University of Fukui.
Objectives: Virtual reality (VR) and three-dimensional (3D) images have become increasingly popular. It has been reported that visually induced motion sickness (VIMS) is more frequently caused by viewing these images. We propose a method to control VIMS by controlling visually evoked postural responses (VEPRs) using galvanic vestibular stimulation (GVS).
View Article and Find Full Text PDFFront Vet Sci
November 2024
Tamura Animal Clinic, Hiroshima, Japan.
J Bodyw Mov Ther
October 2024
Department of Applied Physiotherapy Federal University of Triangulo Mineiro, Brazil. Electronic address:
Background And Aims: Peripheral Diabetic Neuropathy (PDN) is the major complication of diabetes, and sensory-motor impairments can compromise balance, increasing the risk of falls and consequently can lead to functional disability. Thus, this study aims to evaluate the sensory and motor aspects of balance in individuals with type 2 diabetes mellitus with and without PDN.
Methods: This is a cross-sectional study which analyzed balance in 51 individuals, divided into three groups: G1 - individuals with Peripheral Diabetic Neuropathy; G2 - individuals with diabetics and without PDN; and G3 - individuals without Diabetes Mellitus.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!