Infidelity can be a disruptive event in a romantic relationship with a devastating impact on both partners' well-being. Thus, there are benefits to identifying factors that can explain or predict infidelity, but prior research has not utilized methods that would provide the relative importance of each predictor. We used a machine learning algorithm, random forest (a type of interpretable highly non-linear decision tree), to predict in-person and online infidelity across two studies (one individual and one dyadic, N = 1,295). We also used a game theoretic explanation technique, Shapley values, which allowed us to estimate the effect size of each predictor variable on infidelity. The present study showed that infidelity was somewhat predictable overall and interpersonal factors such as relationship satisfaction, love, desire, and relationship length were the most predictive of online and in person infidelity. The results suggest that addressing relationship difficulties early in the relationship may help prevent infidelity.

Download full-text PDF

Source
http://dx.doi.org/10.1080/00224499.2021.1967846DOI Listing

Publication Analysis

Top Keywords

infidelity
9
machine learning
8
relationship
5
infidelity predictable?
4
predictable? explainable
4
explainable machine
4
learning identify
4
identify predictors
4
predictors infidelity
4
infidelity infidelity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!